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Two notable advances in numerical methods were supported by this grant.

First, a fast algorithm was derived, analyzed, and tested for the Fourier transform of pi
ecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space.  T
hese transforms play a key role in computational problems ranging from medical imaging to
 partial differential equations, and existing algorithms are inaccurate and/or prohibitiv
ely slow for d > 0.  The algorithm employs low-rank approximation by Taylor series organi
zed in a butterfly scheme, with moments evaluated by a new dimensional recurrence and sim
plex quadrature rules.  For moderate accuracy and problem size it runs orders of magnitud
e faster than direct evaluation, and one to three orders of magnitude slower than the cla
ssical uniform Fast Fourier Transform.

Second, bilinear quadratures ---which numerically evaluate continuous bilinear maps, such
 as the L2 inner product, on continuous f and g belonging to known finite-dimensional fun
ction spaces---were analyzed and developed.  Such maps arise in Galerkin methods for diff
erential and integral equations.  Bilinear quadratures were constructed over arbitrary D-
dimensional domains.  In one dimension, integration rules of this type include Gaussian q
uadrature for polynomials and the trapezoidal rule for trigonometric polynomials. A numer
ical procedure for constructing bilinear quadratures was developed and validated.
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piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean
space. These transforms play a key role in computational problems ranging from
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1 Introduction

In this paper, we present a new algorithm for the fast evaluation of the exact
Fourier transform

f̂(tk) =
N∑

j=1

∫

Sj

exp(itTk s)fj(s) ds, 1 ≤ k ≤ N, (1)

of piecewise-polynomial densities fj(s) defined on simplices Sj ⊂ RD, at ar-
bitrary points tk ∈ RD. Here i =

√
−1, the ambient dimension D ≥ 1, the

simplex dimension d satisfies D ≥ d ≥ 0, and each Sj is a d-dimensional
simplex of the form

S = {s = v0 +
d∑

i=1

θi(vi − v0) | θi ≥ 0,
d∑

i=1

θi ≤ 1}, (2)

consisting of all convex combinations of d+ 1 given vertices vi ∈ RD. A wide
variety of useful special cases occur frequently in applications.

When the simplex dimension d = 0, each simplex Sj is a point sj , and each
fj is a constant. Transform (1) becomes the pointwise nonuniform Fourier
transform

f̂(tk) =
N∑

j=1

exp(itTk sj)fj, 1 ≤ k ≤ N, (3)

where sj ∈ RD and tk ∈ RD are given D-vectors and fj is a complex number.
The special case where sj and tk form regular cubical grids corresponds to
the classical uniform Fast Fourier Transform [1,2]. Several classes of fast algo-
rithms for pointwise nonuniform transforms such as (3) are now well-known
[3–8], but fast algorithms for the more general transform (1) are less developed
[9–13].

When the simplex dimension d = 1, each simplex Sj is a line segment [uj, vj ]
connecting endpoints uj, vj ∈ RD, and parametrized by s = uj + σ(vj − uj)
for 0 ≤ σ ≤ 1. Transform (1) becomes

f̂(tk) =
N∑

j=1

‖vj − uj‖
1∫

0

exp(itTk (uj + σ(vj − uj)))fj(σ) dσ, 1 ≤ k ≤ N.

When d = 2, each simplex Sj is a triangle ∆(uj, vj, wj) with vertices uj, vj ,
wj ∈ RD, parametrized by s = uj + σ(vj − uj) + θ(wj − uj) where 0 ≤ θ ≤ 1,

2
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0 ≤ σ ≤ 1, σ + θ ≤ 1. Transform (1) becomes

f̂(tk)=
N∑

j=1

√
‖vj − uj‖2‖wj − uj‖2 − ((vj − uj)T (wj − uj))2

·
1∫

0

1−σ∫

0

exp(itTk (uj + σ(vj − uj) + θ(wj − uj)))fj(σ, θ) dθ dσ, 1 ≤ k ≤ N.

For simplex dimension d ≥ 1, the transforms (1) arise in the discretization
of geometric objects by line segments, triangles and tetrahedra. For example,
Fig. 1 displays L-level approximate Sierpinski paths composed of line segments
Sj with simplex dimension d = 1 in ambient dimension D = 2, together with
the Fourier transforms of unit data f = 1 on these paths. As L increases, the
Sierpinski paths tend to fill a triangle T and the Fourier transform f̂ tends to
the Fourier transform of the characteristic function of T .

Our algorithm evaluates transform (1) in O(N logN log ǫ) work to accuracy
ǫ, for arbitrary d and D. It is globally structured as in the butterfly algorithm
of [14], with local transformations based on multidimensional Taylor series.
Thus it groups source simplices Sj and target points tk into hierarchical tree
structures, approximates the kernel exp(itT s) by low-rank expansions, and
transforms the low-rank expansions from source-local to target-local form.
The main new ingredient is a stable efficient dimensional recurrence for local
source moments of polynomials over simplices. Our derivation, analysis and
implementation all operate with arbitrary ambient dimension D ≥ 1, arbitrary
simplex dimension 0 ≤ d ≤ D, and arbitrary polynomial degree deg(fj) = p ≥
0. Despite this generality, our implementation runs orders of magnitude faster
than direct evaluation and even compares favorably with the classical uniform
Fast Fourier Transform.

The paper is organized as follows. In Section 2, we review mathematical tools
such as error bounds for Taylor expansion of exponential functions, and spatial
tree structures for localizing target points. In Section 3, we combine these
tools to derive a pointwise (d = 0) butterfly algorithm similar to [14]. In
Section 4, we generalize the butterfly algorithm to piecewise polynomials fj
on simplices of dimension d ≥ 1. The main new tool is a stable efficient
dimensional recurrence which evaluates exponential-polynomial moments in
dimension d ≥ 1 by a combination of simplex quadrature and recurrence
to simplex dimension d − 1. In Section 5 we present numerical experiments
which verify the efficiency and accuracy of the approach. In Section 6 we
discuss potential speedups with optimized basis functions [15], the evaluation
of Fourier-Galerkin matrix elements [16], and extensions to Laplace and Gauss
transforms [17–19].

3
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(a) 5-level path (b) Fourier transform

(c) 10-level path (d) Fourier transform

Fig. 1. Sierpinski paths and Fourier transforms
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2 Mathematical preliminaries

We review classical tools for low-rank kernel approximation and hierarchical
point clustering. The exponential kernel of transform (1) is approximated by
Taylor expansion. A simple error estimate delineates the region where Taylor
expansion is accurate. Tree structures are developed to organize source and
target points into groups where Taylor expansion is accurate. The classical
pointwise butterfly algorithm combines these tools, while our new piecewise-
polynomial butterfly algorithm involves additional ingredients.

2.1 Low-rank kernel approximation

The multidimensional Taylor expansion

exp(itT s) =
∞∑

i=0

in
(∑D

j=1 tjsj
)n

n!
=
∑

α≥0

i|α|

α!
tαsα (4)

of the complex exponential kernel follows immediately from the multinomial
theorem




D∑

j=1

tj




n

= n!
∑

|α|=n

tα

α!
. (5)

Here

t and s are real or complex D-vectors,
tT s = t1s1 + · · ·+ tDsD is their inner product,
α = (α1, . . . , αD) ∈ ND is a D-dimensional multiindex of order
|α| = α1 + · · ·+ αD,
tα = tα1

1 · · · tαD

D and sα are monomials, and
α! = α1!α2! · · ·αD!.

According to Stirling’s inequality m! ≥ (m/e)m, terminating expansion (4)

after M =
(
m+D
D

)
terms of order |α| ≤ m incurs truncation error Em bounded

by

|Em| =
∣∣∣∣∣∣

∑

|α|>m

1

α!
tαsα

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∞∑

k=m+1

ik

k!
(tT s)k

∣∣∣∣∣∣
≤

∞∑

k=m+1

Rk

k!
≤
(
Re

m

)m

(6)

5
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as long as |tT s| ≤ R where R/m ≤ 0.27 or equivalently m ≥ 3.8R. For
example, with R = 1 accuracy ǫ = 10−6 is guaranteed with m = 11 and
accuracy ǫ = 10−12 is guaranteed with m = 16. In general, the number of
terms M increases polylogarithmically as ǫ decreases.

The utility of expansion (6) can be easily demonstrated with unrealistically
distributed sets of targets and sources. Suppose all the sources sj and targets
tk in the pointwise transform (3) are clustered near 0 so that |tTk sj| ≤ R, where
R and m are chosen to guarantee error |Em| ≤ ǫ. Then expansion (4) speeds
up the pointwise transform (3) as follows:

f̂(tk)=
N∑

j=1

exp(itTk sj)fj (7)

=
N∑

j=1

∑

|α|≤m

i|α|

α!
tαks

α
j fj + Fm

=
∑

|α|≤m

Cαt
α
k + Fm.

Here the coefficients Cα defined by

Cα =
i|α|

α!

N∑

j=1

sαj fj

encode the sources sj and strengths fj into M moments, and |Fm| ≤ ǫ
∑ |fj|

bounds the error. All M moments up to order m can be evaluated in O(MN)
work, while the resulting polynomial approximation to f̂(t) can be evaluated
at N targets tk in O(MN) work. Thus the rank-M kernel approximation

exp itT s =
∑

|α|≤m

i|α|

α!
tαks

α
j + Em (8)

gives an O(N) algorithm with a constant factor O(M) depending polyloga-
rithmically on the accuracy ǫ.

The sources sj and targets tk are not conveniently clustered in most appli-
cations. Indeed, in the classical one-dimensional Fast Fourier Transform [1,2],
sj = 2πj and tk = k/N for 1 ≤ j, k ≤ N , so 0 ≤ tTk sj ≤ 2πN → ∞ as N → ∞.
Thus we employ a collection of expansions (6) centered about arbitrary target
centers τ and source centers σ. Each expansion represents the transform due
to sources sj in a cubical cell S centered at s = σ, evaluated at targets tk in
a cell T centered at t = τ :

6
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∑

sj∈S

exp(itTk sj)fj =
∑

sj∈S

exp(iτTσ + iτT (sj − σ) + i(tk − τ)T (sj − σ) + i(tk − τ)Tσ)fj

=
∑

|α|≤m

exp(iτTσ)
i|α|

α!

∑

sj∈S

(sj − σ)α exp(iτT (sj − σ))fj

·(tk − τ)α exp(i(tk − τ)Tσ) + Fm

=
∑

|α|≤m

Cα(σ, τ)(tk − τ)α exp(i(tk − τ)Tσ) + Fm

where

Cα(σ, τ) = exp(iτTσ)
i|α|

α!

∑

sj∈S

(sj − σ)α exp(iτT (sj − σ))fj (9)

and |Fm| ≤ ǫ
∑ |fj| if

|(tk − τ)T (sj − σ)| ≤ R where
(
Re

m

)m

≤ ǫ (10)

for all tk ∈ T and sj ∈ S. Thus the transform due to sources in S, evaluated
at targets in T , is approximated with a kernel

exp(iτTσ)
∑

|α|≤m

(sj − σ)α exp(iτT (sj − σ))
i|α|

α!
(tk − τ)α exp(i(tk − τ)Tσ)(11)

of rank M =
(
m+D
D

)
, whenever inequalities (10) hold. The accuracy of this

approximation is controlled by the geometry of S and T , rather than the
separation required by classical multipole methods [20,21]. In this paper, we
control accuracy by controlling the relative sizes of S and T , but it is also
possible to divide the sources and targets into groups with selected orientations
θ in tT s = ‖t‖‖s‖ cos θ.

Butterfly algorithms apply low-rank approximate kernels (11) to spatial clus-
ters of sources and targets, via a pair of translation lemmas that shift the
coefficients Cα(σ, τ) of (9) to smaller target cells and larger source cells. These
lemmas are proved by expanding the exponential in Taylor series and applying
the binomial theorem respectively:

Lemma 1 Given sources sj ∈ S and targets tk ∈ T , the coefficient vector
C(σ, τ1) ∈ CM relative to a smaller target cell T1 ⊂ T with center τ1 is
approximated by an upper triangular matrix multiply

Cα(σ, τ1) = exp(i(τ1 − τ)Tσ)
∑

β≥0

(
β + α

β

)
(τ1 − τ)βCβ+α(σ, τ)

7
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=
∑

α≤β, |β|≤m

Rαβ(σ, τ − τ1)Cβ(σ, τ) + E (12)

where

Rαβ(σ, τ) = exp(i(τTσ))

(
β

β − α

)
τβ−α for β ≥ α.

If |α| ≤ m, the error E incurred by truncating formula (12) after terms of
order |β| ≤ m is bounded by ρ−mǫ

∑ |fj | whenever |(τ1 − τ)T (sj − σ)| ≤ R/ρ.

The error estimate for truncating the infinite series follows immediately from
inequality (10) since T1 ⊂ T .

Lemma 2 Given coefficients C(σ1, τ) for source cell S and target cell T1, the
Taylor coefficients Cα(σ, τ) relative to a larger source cell S ⊃ S1 with center
σ are given by an exact lower triangular matrix multiply

Cα(σ, τ) = exp(iτT (σ1 − σ))
∑

β≤α

i|α−β|

(α− β)!
(σ1 − σ)α−βCβ(σ1, τ)

=
∑

β≤α

Lαβ(σ1 − σ, τ)Cβ(σ1, τ). (13)

where

Lαβ(σ, τ) = exp(iτTσ)
i|α−β|

(α− β)!
σα−β

for α ≤ β.

After using Lemma 2 to shift coefficient vectors from several different source
subcells S1, . . . , Sn to a common superset S with center σ, the resulting
expansions can be merged into a single expansion by adding the coefficients:

Cβ(σ, τ) =
n∑

j=1

∑

β≤α

Lαβ(σj − σ, τ)Cβ(σj , τ).

In the butterfly algorithm, the matrices L(σ−σj , τi) and R(σj , τ − τi) operate
on 2D expansions C(σj , τ) representing the combined effect of sources in the
2D children Sj of a source cell S, evaluated at targets in a target cell T .
The result is another set of 2D expansions C(σ, τi) representing sources in
the parent source cell S to targets in each of the 2D children Ti of T . The

8
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combined operation reduces source locality and increases target locality by a
block matrix-vector multiply with 2D M ×M blocks:

C(σ, τi) =
2D∑

j=1

L(σj − σ, τi)R(σj , τ − τi)C(σj , τ). (14)

The butterfly algorithm presented in this paper factorizes the transform (1) by
repeated application of Eq. (14) to moments formed with groups of simplices
and densities. The factorization process is abstracted and generalized in [22].

2.2 Hierarchical point clustering

The expansion shifting and merging lemmas of subsection 2.1 operate within
a data structure which organizes source and target objects Sj and tk into cells
S and T so that inequality (10) is locally satisfied. Collections of geometric
objects such as the source simplices and target points in Eq. (1) can be effi-
ciently organized into local groups by a variety of tree-based data structures
[23]. We employ a 2D-ary tree which generalizes quadtrees and octrees to ar-
bitrary space dimension D. In the present pointwise case where d = 0, its
construction is straightforward.

Suppose N points sj ∈ RD are all contained in a hypercubical unit cell S0,0 =
[σ1−R, σ1+R]× . . .× [σD−R, σD+R] =: σ0,0+RQ with center σ0,0 and width
2R. Here Q denotes the unit cell [−1, 1]D and + denotes addition of sets. We
can build a L-level tree structure SL from the root downward as follows. Let
the root cell be S0,0, comprising the root level 0 of S. For level l = 0 to L− 1,
for J = 0 to 2Dl−1, divide each cubical cell Sl,J = σl,J+2−lRQ into 2D cubical
children Sl+1,2DJ+j = σl+1,2DJ+j+2−l−1RQ for j = 0 to 2D−1, and record them
on level l+1. As each child cell is constructed, construct pointers from the cell
to points sk located inside it and vice versa. The resulting structure SL can
be used to answer many range-type queries such as finding nearest neighbors.
Its O(NL) cost is rarely optimal for any specific task, but its flexibility and
efficiency has made it ubiquitous in computational science. Fig. 2 illustrates
the construction.

9
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(a) Points (b) Tree (c) Cells

Fig. 2. Points in two dimensions, a 6-level tree, and nonempty child cells.
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3 A pointwise butterfly algorithm

A butterfly algorithm for the pointwise transform (3) can be based on low-rank
expansion and hierarchical point clustering [14,15,24–26]. It localizes sources
and targets into tree structures, forms source-local expansion coefficients,
shifts and merges them systematically, and evaluates target-local expansions.
We derive these pointwise algorithms in four steps before generalizing to the
piecewise-polynomial transform (1) in Section 4.

First, we build spatial tree structures SL and TL for the source and target
points. These structures cover the data regions S and T by superimposed layers
l = 0 (the root) to L (the finest level). The number L + 1 of levels required
is determined by |S||T | where |S| and |T | are the diameters of the source and
target point collections respectively. Layer l consists of 2Dl rectangular cells
Sl,j or Tl,j numbered from 0 to 2Dl − 1, whose union partitions the points sk
or tk. The error in an M-term Taylor expansion (4) of the exponential kernel,
for sources located in a level-l cell of SL and targets located in a level-(L− l)
cell of TL will be bounded by ǫ

∑ |fj| for all l if the inequalities

2−L|S||T | ≤ R and
(
Re

m

)m

≤ ǫ (15)

are satisfied. Typically 2DL = O(N) so that each level-L cell contains on av-
erage O(1) points. However, uniform distribution of the points is not assumed
and does not alter the cost of the algorithm.

Second, we create source-local coefficient vectors C(σL,j , τ0,0) which represent
the effect of sources sk in each leaf cell SL,j with center σL,j on the finest level
L of the source tree SL, on all targets tk in the root cell T0,0 with center τ0,0
on level 0 of the target tree TL. Thus

Cα(σL,j , τ0,0) = exp(iτT0,0σL,j)
i|α|

α!

∑

sk∈SL,j

(sk − σL,j)
α exp(iτT0,0(sk − σL,j))fk.

The total cost of coefficient evaluation is O(NM) since each source contributes
to M coefficients in a single leaf cell per source. Once these coefficients have
been evaluated, the field at each target point tk could be accurately approxi-
mated by summing the source-local expansions:

f̂(tk) =
2DL−1∑

j=0

exp(i(tk − τ0,0)
TσL,j)

∑

|α|≤m

Cα(σL,j, τ0,0)(tk − τ0,0)
α.

However, the O(N2) cost of this computation would be prohibitive since 2DL =

11
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O(N). An efficient evaluation scheme requires target-local coefficient vectors
C(σ0,0, τL,j) which represent the effect of all sources to each leaf cell of the
target tree TL, and evaluates one expansion

f̂(tk) = exp(i(tk − τL,j)
Tσ0,0)

∑

|α|≤m

Cα(σ0,0, τL,j)(tk − τL,j)
α,

at each target tk in TL,j . The total cost of evaluating these expansions is
O(NM) since each target evaluation involves M coefficients.

The third step of the butterfly algorithm computes the target-local coefficient
vectors C(σ0,0, τL,j) which approximate the total field, at targets tk in the finest
level-L target cells TL,j with centers τL,j , due to all the sources sk in the source
root cell S0,0 with center σ0,0. The algorithm proceeds by doubling source cells
and halving target cells, and therefore requires L = O(logN) substeps. The
substep from source level l and target level L− l to source parent level l − 1
and target child level L− l + 1, consists of two operations.

In the first operation, on source level l and target level (L − l), for J = 0 to
2D(L−l)−1, each target cell TL−l,J is split into 2D children TL−l+1,2DJ+j ⊂ TL−l,J

with j = 0 to 2D−1. Each coefficient vector C(σl,i, τL−l,J) relative to the parent
center τL−l,J is converted to another coefficient vector

C(σl,i, τL−l+1,2DJ+j) = R(σl,i, τL−l,J − τL−l+1,2DJ+j)C(σl,i, τL−l,J)

relative to each child center τL−l+1,2DJ+j, using theM×M matrices R(σl,i, τL−l,J−
τL−l+1,2DJ+j) defined in Eq. (12).

In the second operation, each group of 2D level-l source cell siblings Sl,i ⊂
Sl−1,I with I = ⌊i/2D⌋, is merged into their parent Sl−1,I . For J = 0 to
2D(L−l+1) − 1, each coefficient vector C(σl,i, τL−l+1,2DJ+j) relative to source
child center σl,i is converted to a coefficient vector

Bi(σl−1,I , τL−l+1,2DJ+j) = L(σl,i − σl−1,I , τL−l+1,2DJ+j)C(σl,i, τL−l+1,J)

relative to the source parent center σl−1,I , using the M ×M matrices L(σl,i −
σl−1,I , τL−l+1,2DJ+j) defined in Eq. (13). Since the 2D resulting coefficient vec-
tors Bi have the same source center σ = σl−1,I), and the same target center
τ1 = τL−l+1,2DJ+j, they are summed coefficient by coefficient:

C(σ, τ1) =
2D∑

i=1

Bi(σl,i, τ1)

12
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=
2D∑

i=1

L(σl,i − σ, τ1)R(σl,i, τL−l,J − τ1)C(σl,i, τL−l,J).

After these two substeps, target cells have been halved and source cells have
been doubled, so the error control estimate (10) is preserved. Arranging the
fan-out matrices R and fan-in matrices L symmetrically as in Fig. 3 illustrates
the butterfly algorithm [?,?,?].

Fig. 3. Interactions between opposite levels of the source and target trees give the
butterfly algorithm its name.

After L steps of the butterfly scheme, a coefficient vector C(σ0,0, τL,j) has been
computed for each target cell TL,j on the finest level L, and each coefficients
vector represents the field due to all the sources, evaluated at any tk ∈ TL,j:

f̂(tk) = exp
(
i(tk − τL,j)

Tσ0,0

) ∑

|α|≤m

Cα(σ0,0, τL,j) (tk − τL,j)
α (16)

Hence the transform can be accurately evaluated at each target tk in O(MN)
time, where M depends polylogarithmically on the accuracy required. A de-
tailed algorithm is exhibited in Fig. 4.

13
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Fig. 4. A pointwise butterfly algorithm

Step 1 - Localization

Sort sources sj and targets tk into leaf cells of L-level trees SL and TL

Step 2 - Compute source-centered coefficients

for j = 0 . . . 2DL − 1
S = SL,j

σ = σL,j

τ = τ0,0
for |α| ≤ m

Cα(σ, τ) = exp(iτTσ) i
|α|

α!

∑
sk∈S(sk − σ)α exp(iτT (sk − σ))fk

end for

end for

Step 3 - Butterfly

for l = L . . . 1
for I = 0 . . . 2Dl − 1

σ = σl−1,I

for J = 0 . . . 2D(L−l) − 1
τ = τL−l,J

for j = 0 . . . 2D − 1
τ1 = τL−l+1,2DJ+j

C(σ, τ1) =
∑2D−1

i=0 L(σl,I/2D+i − σ, τ1)R(σl,I/2D+i, τ − τ1)C(σl,I/2D+i, τ)
end for

end for

end for

end for

Step 4 - Evaluate target-centered expansions

for j = 0 . . . 2DL − 1
σ = σ0,0

T = TL,j

τ = τL,j
for tk ∈ TL,j

f̂(tk) = exp(i(tk − τ)Tσ))
∑

|α|≤mCα(σ, τ)(tk − τ)α

end for

end for

14
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4 Piecewise-polynomial distributions

Given N polynomial densities fj on d-dimensional simplices Sj ⊂ RD, we
derive a fast algorithm for evaluating the Fourier transform

f̂(tk) =
N∑

j=1

∫

Sj

exp(itTk s)fj(s) ds (17)

at N points tk ∈ RD. Our algorithm combines the low-rank kernel approxi-
mation, tree structures and butterfly scheme of Sections 2 and 3 with a new
dimensional recurrence for evaluating exponential-polynomial moments (Sec-
tion 4.1.1) and a flexible tree structure for localizing simplices (Section 4.1.2).

Suppose a given simplex Sj is contained in a cubical cell S = σ+RSQ and tk
lies in a cubical cell T = τ +RTQ where R = RSRT satisfies

(
Re

m

)m

≤ ǫ. (18)

Then

exp(itTk s) = exp(iτTσ)
∑

|α|≤m

i|α|

α!
(s− σ)α exp(iτT (s− σ)) (tk − τ)α exp(i(tk − τ)Tσ) + Em

where |Em| ≤ ǫ. Hence integrating over Sj gives

∫

Sj

exp(itTk s)fj(s) ds =
∑

|α|≤m

Cα(σ, τ) (tk − τ)α exp(i(tk − τ)Tσ) + Fm (19)

where |Fm| ≤ ǫ
∫ |fj| and

Cα(σ, τ) = exp(iτTσ)
i|α|

α!

∫

Sj

(s− σ)α exp(iτT (s− σ))fj(s) ds

=exp(iτTσ)
i|α|

α!
Fα(d, Sj, fj).

Here the M-vector F of exponential-polynomial moments is defined by

Fα(d, S, f) =
∫

S

(s− σ)α exp(iτT (s− σ))f(s) ds (20)
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for a polynomial density f on a simplex S. The source center σ, target center
τ , and ambient dimension D are omitted from the notation for simplicity. In
Section 4.1.1, we derive efficient methods for evaluating F .

4.1 Exponential-polynomial moments

Fourier transforms of piecewise-polynomial data over simplices involve exponential-
polynomial moments defined by

Fα(d, S, f) =
∫

S

exp(itT s)(s− σ)αf(s) ds, (21)

computed for all multiindices α with |α| ≤ m and a given degree-p polyno-
mial f defined on the d-dimensional simplex S. The target point t, ambient
dimension D and cell center σ are omitted from notation for simplicity.

For example, direct evaluation of transform (1) without the butterfly algo-
rithm is equivalent to the summation of N moments F (d, Sj, fj, 0) of order
|α| = 0 for each point of evaluation tk. Expansion (19) requires moments
F (d, Sj, fj, α) for all orders up to |α| = m, with t = τ ranging over various
target cell centers. Similar moments formed with polynomial, exponential or
bandlimited bases occur in other butterfly algorithms for pointwise data with
d = 0. When d > 0, no algorithm is known for their exact evaluation, and the
rapid oscillation of the exponential kernel renders them resistant to standard
numerical quadratures.

We evaluate these moments by a recursively branching three-step procedure.
First, we extract the variation of the exponential perpendicular to S (subsec-
tion 4.1.1). Second, if the remaining parallel variation is small, we evaluate the
moment directly by numerical quadrature (Section 4.1.2). Third, we reduce
the simplex dimension d by dimensional recurrence (Section 4.1.3), continuing
recursively until d = 0 or the remaining parallel variation is small.

4.1.1 The perpendicular variation

If the simplex S has positive dimension and codimension, so 0 < d < D,
then moments (21) are simplified by extracting the part of the target vector t
perpendicular to the d-dimensional affine hyperplane

H = {s = v0 +
d∑

i=1

θi(vi − v0) | θi ∈ R}
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containing the domain of integration

S = {v0 +
d∑

i=1

θi(vi − v0) | θi ≥ 0,
d∑

i=1

θi ≤ 1}. (22)

Define the D×d full-rank matrix V to have columns vi−v0 ∈ RD for i = 1 to
d, so that the simplex S is parametrized by s = v0 + V θ where θ varies over
the standard d-dimensional simplex

S0 = {(θ1, . . . , θd) | θi ≥ 0,
d∑

i=1

θi ≤ 1}.

Then

H = {s = v0 + V θ | θ ∈ Rd}

and the moments (21) are given by

Fα(d, S, f)= vol(S)
∫

S0

exp(itT (v0 + V θ))(v0 + V θ − σ)αf(v0 + V θ) dθ

=vol(S) exp(itT⊥v0)
∫

S0

exp(itT‖ (v0 + V θ)(v0 + V θ − σ)αf(v0 + V θ) dθ

where vol(S) =
√
det(V TV ) [27]. Here t has been decomposed into its projec-

tions t⊥ and t‖, respectively perpendicular to and parallel to the hyperplane
H containing S. Computationally, t‖ = V (V TV )−1V T t satisfies an overde-
termined least squares problem solved by applying the pseudoinverse or left
inverse of V . The perpendicular component t⊥ = t− t‖ lies in the nullspace of
V T and hence plays no role in the variation of the integrand over the simplex
(22). Returning to the original variables thus gives

Fα(d, S, f) = exp(itT⊥v0)Gα(d, S, f) (23)

where the parallel moment vector G is defined by

Gα(d, S, f) =
∫

S

exp(itT‖ s)(s− σ)αf(s) ds. (24)

Henceforth we focus on evaluation of G.
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4.1.2 Small parallel variation

When ‖V T t‖‖ = ‖V T t‖ is small, the variation of the exponential factor exp(itT‖ s)
in the integrand of G is small, so numerical quadrature will be extremely ac-
curate. For example, if ‖V T t‖ ≤ ǫ then the exponential factor of the inte-
grand in Eq. (24) can be replaced by exp(itT‖ v0) with relative error O(ǫ), by

exp(itT‖ v0)(1+ itT‖ s) with relative error O(ǫ2), and so forth. It is not necessary
explicitly to carry out this replacement, however, because small parallel vari-
ation guarantees the accuracy of an appropriate quadrature rule. Such rules
have been extensively developed and occur in many variants [28]. Our imple-
mentation employs suboptimally accurate but convenient Grundmann-Moeller
(GM) rules [29], which can be generated in arbitrary simplex dimension and

degree of exactness. A GM rule which is exact for the Q =
(
p+m+q+d

d

)
poly-

nomials of degree p + m + q on S will yield O(‖V T t‖‖q+1) accuracy for M
moments up to order m, at a cost of O(QM) arithmetic.

Specification of quadrature rules also suggests a specific choice of basis for
polynomials f of degree p on a d-dimensional simplex in RD. The Bernstein-
Bezier basis, for example, facilitates geometric operations on curved surfaces
[30], and has recently been employed in the geometric nonuniform fast Fourier
transform [12] and in the finite element method [31]. We employ the convenient
and flexible Lagrange representation which parametrizes f by polynomial val-
ues at equispaced points in each simplex. Thus a degree-p polynomial f is
represented by an P -vector of values f(sα), where P =

(
p+d
d

)
and typical

equidistant point sets sα are shown in Fig. 5.

Lagrange representation simplifies evaluation at the Q equidistant quadrature
points of GM rules, and trivializes transformation to the reference simplex
S0. In this representation, linear operations such as differentiation, restric-
tion to simplex boundaries, or multiplication by shifted monomials (s − σ)α

are straightforward and stable. It is also convenient when the densities fj
are continuous functions such as the exponentials, sinusoids, and logarithms
commonly encountered in applications.

4.1.3 Dimensional recurrence

When the variation is not small, we evaluate the parallel moments G in Eq.
(23) by a dimensional recurrence based on the Gauss formula for multidimen-
sional integration by parts. Given a vector h parallel to the d-dimensional
affine hyperplane H containing S, and a smooth function ϕ on RD, the Gauss
formula reads

∫

S

hT∇ϕ(s) ds =
∫

∂S

hTnϕ(s) ds,
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where the boundary ∂S and outward unit normal vector n of S are defined
relative to H . (See Fig. 6.)

Applying the Gauss formula to the triple product e(s)f(s)g(s) = exp(itT‖ s)f(s)(s−
σ)α, where hT∇e(s) = ihT t‖e(s) and g(s) = (s−σ)α is a polynomial of degree
|α| ≤ m, gives

∫

S

hT∇(efg)=
∫

∂S

hTnefg

2 3 4p=1

Fig. 5. P =
(p+d

d

)
= 2, 3, 4, 5, 3, 6, 10, 15 equally spaced points for the representation

of polynomials of degree p = 1 through 4 on simplices of dimension d = 1 and 2.
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=
∫

S

ihT t‖efg + ehT∇fg + efhT∇g. (25)

Solving for
∫
S efg gives

∫

S

efg =
1

ihT t‖



∫

∂S

hTnefg −
∫

S

ehT∇fg −
∫

s

efhT∇g




n1

n2

n3
v3

v2

v1

Fig. 6. Vertices vk and outward unit normal vectors nk relative to the affine hyper-
plane H, for a simplex with d = 2 in ambient dimension D = 3.
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or
∫

S

e((I + zT∇)f)g =
∫

∂S

zTnefg −
∫

S

efzT∇g (26)

where z = h/(ihT t‖) and I is the identity operator. Since (26) holds for all
polynomials f and g, it holds with f replaced by the degree-p polynomial

f1 =
(
I + zT∇

)−1
f =

(
I − zT∇+ (zT∇)2 − · · ·+ (−1)p(zT∇)p

)
f.

The sum terminates because deg(f) ≤ p. Here I + zT∇ is an invertible linear
operator on the P -dimensional space of polynomials of degree ≤ p, since all
eigenvalues of the operator zT∇ are 0. Since (I + zT∇)f1 = f , Eq. (26) yields

∫

S

efg =
∫

∂S

zTn ef1g −
∫

S

ef1z
T∇g =

∫

∂S

zTn ef1g0 +
∫

S

ef1g1 (27)

where g0 = g and gk = (−zT∇)kg is a polynomial of degree ≤ m−k for k ≥ 1.
Iterating the recurrence relation (27) eventually eliminates the integrals over
S completely since gm+1 = 0, yielding a dimensional recurrence

∫

S

efg =
∫

∂S

zTn e (f1g0 + f2g1 + · · ·+ fm+1gm) (28)

where fk = (I + zT∇)−kf for k ≥ 1. Each gj term is a linear combination of
moments of fj+1 with orderm−j, so the dimensional recurrence (28) expresses
order-m moments of a degree-p polynomial over a simplex S of dimension d,
as linear combinations of order-(m− r) moments of (m+1) different degree-p
polynomials fr over d+1 simplices ∂kS of dimension d−1. Here the boundary
∂S = ∪d

k=0∂kS consists of d + 1 oriented simplices ∂kS of dimension d − 1,
formed by omitting vertex k = 0 through d successively.

Define the D-vector of moment shift operators E = (E1, . . . , ED) such that

zT∇(s− σ)α = zTE(s− σ)α =
D∑

j=1

zjαj(s− σ)α−ej

and

zTEGα(d, S, f) =
D∑

j=1

zjGα−ej(d, S, f)
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for αj > 0. Let G(d, S, f) denote the M-vector of moments Gα(d, S, f). Then
the dimensional recurrence (28) reads explicitly

G(d, S, f)=
d∑

k=0

zTnk(G(d− 1, ∂kS, f1)− zTEG(d− 1, ∂kS, f2) (29)

+ (−zTE)2G(d− 1, ∂kS, f3) + · · ·+ (−zTE)mG(d− 1, ∂kS, fm+1))

=
d∑

k=0

zTnk

m∑

r=0

(−zTE)rG(d− 1, ∂kS, fr+1) (30)

For a single moment of order |α| = 0, as in direct evaluation of the Fourier
transform (1), the double sum (29) simplifies to

G(d, S, f) =
d∑

k=0

zTnk G(d− 1, ∂kS, f1). (31)

Thus the direct transform is exactly the sum of d + 1 direct transforms of
degree-p polynomials f1 over (d−1)-dimensional simplices ∂kS. The recurrence
terminates when the dimension of the simplex reaches 0, as the simplices
then become points. Thus the cost of the direct transform on d-dimensional
simplices is equivalent to (d+ 1)! pointwise direct transforms. (Note that this
recurrence does not convert standard fast algorithms for points where d = 0
to algorithms for simplices with d > 0, because the transformation f → f1
depends on the target t.)

An alternate dimensional recurrence can be obtained by interchanging the
roles of f and g. Such an interchange leads to a shorter recurrence

∫

S

efg =
∫

∂S

zTn e
(
g1f 0 + g2f 1 + · · ·+ gp+1f p

)
(32)

if p < m, where now

gk = (I + zT∇)−kg, fk = (−zT∇)kf.

Each gk is a linear combination of order-m moments, so the dimensional recur-
rence (32) expresses order-m moments of a degree-p polynomial over a simplex
S of dimension d, as linear combinations of order-m moments of (p+1) degree-
(p− r) polynomials fr over d+1 simplices ∂kS of dimension d− 1. Explicitly,

G(d, S, f)=
d∑

k=0

zTnk((I + zTE)−1G(d− 1, ∂kS, f
0) (33)
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+(I + zTE)−2G(d− 1, ∂kS, f
1) + · · ·+ (I + zTE)−p−1G(d− 1, ∂kS, f

p))

=
d∑

k=0

zTnk

p+1∑

r=1

(I + zTE)−r−1G(d− 1, ∂kS, f
r). (34)

Fig. 7 displays a G evaluation scheme which combines quadrature for small
parallel variation with recurrence (34) for large parallel variation.

Fig. 7. Recursive evaluation of G = G(d, S, f) by quadrature and recurrence.

if ‖V T t‖‖ ≤ ǫ
Generate quadrature rule of order p+m
Evaluate G(d, S, f) by quadrature

else

z = −it‖/‖t‖‖2
G = 0
f 0 = f
for r = 1 . . . p+ 1

f r = (−zT∇)f r−1

for k = 0 . . . d
G = G+ (I + zTE)−r−1G(d− 1, ∂kS, f

r)
end for

end for

end if

4.1.4 Computational cost and stability

The total computational effort W (m, p, d,D) required to evaluate all order-m
moments of a degree-p polynomial on a dimension-d simplex in RD can now
be bounded. Using the dimensional recurrence (28), for example, requires a
P ×P matrix-vector multiply to generate each of the m auxiliary polynomials
f r+1. Then M moments G(d, S, f) for |α| ≤ m are linear combinations of
O(M) boundary moments of order m − r for fr+1 as r ranges from 0 to m.
Hence the total cost W (m, p, d,D) for evaluating all M moments in simplex
dimension d satisfies

W (m, p, d,D) ≤ mpd +O(m2D+1)W (d− 1, m) ≤ O(mpd +m1+d(2D+1))

Although the exponent is large, the cost of moment evaluation is much smaller
in practice because many branches of the dimensioonal recurrence terminate
with quadrature.

Both recurrences (28) and (32) are numerically stable when z is small and the
terms in the formally infinite sum defining (I+zT∇)−1 rapidly decrease to zero.
The natural choice h = t‖ makes z = −it‖/‖t‖‖2 small when t‖ is large. When
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the variation ‖t‖‖ is small, of course, the recurrence can be highly unstable
and numerical integration is employed as in 4.1.2.

4.2 Tree structures

Two additional ingredients, approximation and remaindering, are necessary to
localize geometric objects such as simplices into spatial tree structures similar
to those of Section 2.2, with cells satisfying inequality (18).

Unlike points, a given simplex may not lie exactly within a given cubical cell
Sl,j. Thus we define a simplex S to lie ǫ-approximately within a cell σ + RQ
if each vertex v of S satisfies |vj − σj | ≤ (1 + ǫ)R for j = 1 to D. Our tree
construction procedure initially assigns all simplices to the root cell S0,0. Then
simplices are ǫ-approximately assigned to child cells when possible.

However, some simplices may be too large or too awkwardly placed to fit into
any cell on a given level l. See Figs. 8 and 9 for examples. Such simplices simply
remain in the smallest possible source cell, and contribute into the coefficients
later. (They can additionally be subdivided by the algorithm of [12]). The
butterfly algorithm collects these simplices at each level as it works its way
up and down the source and target trees. After each split-merge step, source
simplices remaining in each source cell Sl−1,I are folded into the coefficient
vector for each target cell TL−l+1,j via

Cα(σl−1,I , τL−l+1,j) =Cα(σl−1,I , τL−l+1,j) (35)

+
∑

Sk⊂Sl−1,I

exp(iτTL−l+1,jσl−1,I)
i|α|

α!
Fα(d, Sk, fj).

The cost of the algorithm is unaffected by this modification if the number of
remaindered simplices is O(1).

A detailed piecewise-polynomial butterfly algorithm is exhibited in Fig. 10.
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(a) Simplices (b) Level 0 (c) Level 1

(d) Level 2 (e) Level 3 (f) Level 4

Fig. 8. A spatial tree structure for geometric data with d = D = 2 and L = 4 levels.
Simplices of various sizes are sorted into cells of a tree structure with an overlap
tolerance of 5 percent, leaving a few awkwardly placed simplices in non-leaf cells on
every level. Almost all of the simplices are ǫ-approximately assigned to leaf cells on
Level 4.

(a) Points (b) Segments (c) Triangles

Fig. 9. Spatial tree structures for points, segments and triangles
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Fig. 10. A piecewise-polynomial butterfly algorithm

Step 1 - Localization

Sort source simplices Sj and target points tk into minimal cells of L-level trees SL and TL

Step 2 - Compute source-centered coefficients

for j = 0 . . . 2DL − 1
S = SL,j

σ = σL,j

τ = τ0,0
for |α| ≤ m

Cα(σ, τ) = exp(iτTσ) i
|α|

α!

∑
Sk⊂S

∫
Sk
(s− σ)α exp(iτT (s− σ))fk(s) ds

end for

end for

Step 3 - Butterfly with remainder

for l = L . . . 1
for I = 0 . . . 2Dl − 1

S = Sl−1,I

σ = σl−1,I

for J = 0 . . . 2D(L−l) − 1
τ = τL−l,J

for j = 0 . . . 2D − 1
τ1 = τL−l+1,2DJ+j

C(σ, τ1) =
∑2D−1

i=0 L(σl,I/2D+i − σ, τ1)R(σl,I/2D+i, τ − τ1)C(σl,I/2D+i, τ)
for Sk ⊂ S

for |α| ≤ m

Cα(σ, τ1) = Cα(σ, τ1) + exp(iτT1 σ)
i|α|

α!

∫
Sk
(s− σ)α exp(iτT1 (s− σ))fk(s) ds

end for

end for

end for

end for

end for

end for

Step 4 - Evaluate target-centered expansions

for j = 0 . . . 2DL − 1
σ = σ0,0

T = TL,j

τ = τL,j
for tk ∈ TL,j

f̂(tk) = exp(i(tk − τ)Tσ))
∑

|α|≤mCα(σ, τ)(tk − τ)α

end for

end for
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5 Numerical results

The piecewise-polynomial butterfly algorithm (10) has been implemented in
the Fortran 77 programming language, for simplices of arbitrary dimension d in
arbitrary ambient dimension D, with multidimensional arrays mapped to one-
dimensional arrays. Linear operations such as differentiation, integration and
interpolation of polynomials are implemented by matrix-vector multiplications
with precomputed matrices.

As a result of this dimensional generality, our present implementation is sub-
optimally efficient, and all timing results should be viewed as preliminary. We
plan to investigate speedups such as parallelization in future work.

The accuracy and efficiency of the implementation have been verified on a
gallery of test cases including simplices of dimensions 0 through 2 in ambient
dimensions 1 through 3. All results below were obtained with the gfortran

compiler on a single Intel Xeon E5-2670 v2 processor with 64 GB of memory.

5.1 Discrete points in RD

Fig. (10) evaluates the pointwise nonuniform Fast Fourier Transform (3) in
the case when the source simplex dimension d = 0. We tested the pointwise
transform on N random source and target points distributed over source and
target domains of size O(1) and O(N) respectively. Table 1 shows the CPU
times Ts required to achieve s = 3, 6, 9 and 12-digit accuracy, as well as the
CPU time Td required by direct evaluation. The CPU time TF required for a
standard NF -point complex D-dimensional FFT [32] is also shown. The FFT
timings are monotonized by choosing NF to be the smallest product of powers
of 2, 3 and 5 which is larger than N . Tables 2 and 3 show the CPU times Ts for
D = 2 andD = 3, with asterisks indicating cases where the butterfly algorithm
required more memory than the 4 GB installed in our current workstation.
We conclude that the pointwise butterfly algorithm is much faster than direct
evaluation even for small problem sizes N and maximum twelve-digit accuracy,
in D = 1 dimensions. In D = 2 dimensions it is faster for all problem sizes
N at three-digit accuracy, but twelve-digit accuracy does not break even until
N = 8100. InD = 3 dimensions it is faster for all problem sizes N at three-digit
accuracy, while six-digit accuracy does not break even until N = 5832. The
memory limitations of our current workstation slow the butterfly algorithm
considerably for higher accuracy in three dimensions, so that it never breaks
even with direct evaluation if more than six digits are requested. Hence our
higher-accuracy results in two and three dimensions tend to understate the
performance of the butterfly algorithm; it should run orders of magnitude
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faster in less constrained computing environments.

Compared to the classical FFT for NF uniform points, the butterfly algorithm
is asymptotically within two orders of magnitude for three-digit accuracy.
Since our implementation operates in arbitrary simplex dimension and ambi-
ent dimension, an optimized implementation might run ten times faster, and
compare more favorably with a standard uniform FFT. The cost of the but-
terfly algorithm is a polylogarithmic function of the accuracy, and our results
suggest that doubling the accuracy less than doubles the cost (in D = 1).

Table 1
CPU times Ts for s = 3, 6, 9 and 12-digit accuracy, for N random points with d = 0
in ambient dimension D = 1.

N TF Td T3 T6 T9 T12

729 0.00008 0.087 0.006 0.009 0.012 0.020

5832 0.00063 5.714 0.057 0.098 0.132 0.216

10935 0.00120 19.789 0.110 0.183 0.256 0.329

16038 0.00180 42.655 0.162 0.254 0.413 0.580

21141 0.00240 74.195 0.231 0.392 0.513 0.703

26244 0.00300 113.856 0.278 0.451 0.629 1.026

31347 0.00359 163.317 0.359 0.554 0.931 1.163

36450 0.00439 224.520 0.430 0.678 0.998 1.391

41553 0.00498 290.851 0.502 0.772 1.107 1.537

46656 0.00537 369.967 0.528 0.875 1.225 2.014
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Table 2
CPU times Ts for s = 3, 6, 9 and 12-digit accuracy, for N random points with d = 0
in ambient dimension D = 2.

N TF Td T3 T6 T9 T12

729 0.00018 0.100 0.035 0.158 0.418 0.938

2304 0.00048 0.990 0.087 0.481 1.665 3.464

4761 0.00098 4.091 0.165 1.056 2.974 7.028

8100 0.00178 11.865 0.281 1.522 4.813 11.322

12321 0.00273 28.155 0.394 2.723 7.261 15.510

17424 0.00391 55.471 0.681 3.100 10.457 23.183

23409 0.00547 100.128 0.717 4.496 13.668 33.479

30276 0.00703 166.163 0.869 5.145 18.234 39.695

38025 0.00937 259.937 0.945 6.598 20.500 53.227

46656 0.01250 408.240 1.578 8.313 29.188 61.246

Table 3
CPU times Ts for s = 3, 6, 9 and 12-digit accuracy, for N random points with d = 0
in ambient dimension D = 3.

N TF Td T3 T6 T9 T12

729 0.00035 0.114 0.129 0.816 5.859 23.207

1728 0.00085 0.675 0.242 3.063 12.023 50.125

3375 0.00347 2.637 0.344 4.563 21.141 77.188

5832 0.00586 6.379 1.031 6.516 29.531 191.641

9261 0.01875 17.364 1.250 8.563 73.594 248.813

13824 0.01875 38.880 1.938 20.438 92.281 4219.156

19683 0.03750 73.811 2.375 26.844 290.906 ***

27000 0.03750 151.875 2.813 31.375 565.625 ***

35937 0.03750 247.067 3.125 37.500 615.000 ***

46656 0.03750 408.240 3.438 41.313 *** ***
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5.2 Line segments in RD

We tested the butterfly algorithm on n randomly placed line segments in
RD, setting each fj to a random cubic polynomial and evaluating f̂(tk) at N
random points tk ∈ RD. Here N is the total number of degrees of freedom
in the input, which for cubic polynomials on line segments is 4n, and NF is
again the smallest multiple of powers of 2, 3 and 5 which is larger than N .

As in the case of points where d = 0, the butterfly algorithm compares very
favorably with direct evaluation. For six-digit accuracy it beats direct evalua-
tion for every problem size N , by three orders of magnitude when N = 186624.
Since the number of degrees of freedom is larger, the standard FFT has more
work to do and the butterfly algorithm does better by comparison. For three-
digit accuracy in D ≥ 1, it runs as fast as 25 FFTs.

Table 4
CPU times Ts for s = 3, 6, 9 and 12-digit accuracy, for cubic polynomials on
n = N/4 random segments with d = 1 in ambient dimension D = 1.

N TF Td T3 T6 T9 T12

2916 0.00030 0.948 0.006 0.010 0.014 0.022

23328 0.00260 60.819 0.060 0.098 0.136 0.228

43740 0.00500 214.415 0.125 0.205 0.286 0.356

64152 0.00740 460.701 0.189 0.294 0.446 0.574

84564 0.00981 798.362 0.235 0.397 0.581 0.757

104976 0.01240 1230.700 0.321 0.507 0.692 1.080

125388 0.01475 1760.514 0.390 0.622 0.842 1.218

145800 0.01660 2375.657 0.430 0.743 1.065 1.355

166212 0.01992 3084.012 0.503 0.847 1.192 1.499

186624 0.02109 3891.037 0.527 0.956 1.323 2.074
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Table 5
CPU times Ts for s = 3, 6, 9 and 12-digit accuracy, for cubic polynomials on N
random segments with d = 1 in ambient dimension D = 2.

N TF Td T3 T6 T9 T12

2916 0.00059 1.068 0.024 0.118 0.409 0.865

9216 0.00195 10.598 0.090 0.464 1.201 2.739

19044 0.00391 45.378 0.176 0.742 2.500 6.881

32400 0.00703 134.156 0.223 1.299 4.814 10.311

49284 0.01172 302.731 0.412 2.041 7.145 14.998

69696 0.01641 607.117 0.455 2.979 9.045 22.514

93636 0.02031 1093.639 0.770 4.555 13.367 28.801

121104 0.02813 1842.578 0.832 5.066 14.195 38.488

152100 0.03750 2954.364 0.973 5.391 20.215 41.859

186624 0.04219 4441.432 1.082 6.969 24.133 60.227

Table 6
CPU times Ts for s = 3, 6, 9 and 12-digit accuracy, for cubic polynomials on N
random segments with d = 1 in ambient dimension D = 3.

N TF Td T3 T6 T9 T12

2916 0.00142 1.196 0.133 0.766 3.469 12.797

6912 0.00361 6.885 0.188 1.336 11.797 25.906

13500 0.00469 26.631 0.359 3.523 20.883 74.656

23328 0.00937 80.190 0.484 6.359 29.500 107.219

37044 0.01875 199.690 0.578 8.641 74.047 229.078

55296 0.01875 444.960 1.563 10.344 48.969 687.000

78732 0.03750 898.037 1.813 12.594 112.000 4574.969

108000 0.03750 1704.375 2.813 15.188 329.375 ***

143748 0.03750 3009.724 3.250 39.563 609.938 ***

186624 0.03750 5073.840 3.813 45.625 4399.375 ***
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5.3 Triangles in RD

We also tested the butterfly algorithm on n randomly placed triangles in
RD, setting each fj to a random cubic polynomial and evaluating f̂(tk) at N
random points in RD. Here N is the total number of degrees of freedom in
the input, which for cubic polynomials on triangles is 10n.

As in the case of segments, the butterfly algorithm compares very favorably
with direct evaluation. For six-digit accuracy it beats direct evaluation for
every problem size N , by three orders of magnitude when N = 466560. Fur-
thermore, the butterfly algorithm requires only 10 FFTs to obtain three-digit
accuracy in ambient dimension D = 2.

Table 7
CPU times Ts for s = 3, 6, 9 and 12-digit accuracy, for cubic polynomials on
n = N/10 random triangles with d = 2 in ambient dimension D = 2.

N TF Td T3 T6 T9 T12

7290 0.00154 6.400 0.029 0.133 0.438 0.943

23040 0.00562 66.414 0.070 0.434 1.285 2.869

47610 0.01045 274.862 0.145 0.807 2.405 5.791

81000 0.01992 786.507 0.264 1.410 4.948 11.447

123210 0.03047 1837.802 0.323 2.271 6.012 15.571

174240 0.04219 3651.893 0.391 3.201 9.545 22.889

234090 0.06094 6772.151 0.676 3.623 13.414 32.809

302760 0.07969 11314.472 1.098 5.680 15.449 36.672

380250 0.10938 18017.314 1.215 6.094 22.102 50.063

466560 0.13125 27191.700 1.344 7.688 23.680 64.141
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Table 8
CPU times Ts for s = 3, 6, 9 and 12-digit accuracy, for cubic polynomials on
n = N/10 random triangles with d = 2 in ambient dimension D = 3.

N TF Td T3 T6 T9 T12

7290 0.00361 7.233 0.063 0.797 3.797 13.508

17280 0.00000 41.040 0.219 1.406 6.859 27.203

33750 0.01875 155.039 0.297 4.672 18.469 79.641

58320 0.01875 472.027 0.500 6.500 29.938 111.938

92610 0.01875 1172.095 0.656 9.000 39.406 253.781

138240 0.03750 2609.280 0.844 11.219 51.781 3070.313

196830 0.07500 5265.203 2.063 14.188 116.500 4854.438

270000 0.11250 9973.125 2.438 17.188 342.938 ***

359370 0.15000 17182.378 2.688 21.438 364.063 ***

466560 0.18750 28343.520 4.000 24.063 3126.563 ***
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6 Extensions and applications

The algorithm described above can be accelerated, generalized and applied
in several ways. We discuss acceleration by change of basis via low-rank ap-
proximation, extension to the evaluation of Galerkin matrix elements, and
generalization to Laplace and Gauss transforms.

6.1 Acceleration

A standard ingredient of many other butterfly algorithms is a choice of basis
functions which accelerates the algorithm. For example, Taylor series approx-
imation of the exponential is suboptimal for approximation on a real interval.
Minimax or Chebyshev approximation can attain equal accuracy with fewer
terms, leading to a factor of 2 speedup in the one-dimensional pointwise but-
terfly algorithm of [15].

Often the basis functions are chosen implicitly by transforming the shift and
merge matrices in the intermediate steps. Butterfly algorithms can be thought
of as matrix factorizations [22], where the basic matrix A with elements

Ajk = exp itTj sk

is written as

A = EB1B2 · · ·BLF.

Here F forms source values into coefficients, E evaluates approximate values
at targets, and the intermediate matrices Bj are sparse block matrices that
perform shift and merge operations on the coefficients. Most of the computa-
tional effort goes into applying the intermediate factors Bj , so economizing Bj

pays large rewards. For example, consider diagonalizing each block of Bj as
in [33,34]. Then shift and merge operations become diagonal, reducing their
cost substantially from O(M2) to O(M). However, the transformation to di-
agonal form is difficult to implement in an efficient stable form. Thus popular
alternatives tend to employ factorizations such as the SVD or interpolative
decompositions.

Interpolative decompositions factorize

Bj = XY Z
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withX and Z submatrices of Bj and Y small and well-conditioned. They speed
up the application of Bj to arbitrary vectors, and offer considerable speedups
in the butterfly algorithm. We plan to incorporate such factorizations into
future versions of our code.

6.2 Galerkin matrix elements

In many applications, pointwise evaluation of the Fourier transform is less
desirable than the application of Galerkin matrix elements

f̂kj =
∫

Tk

gk(t)
∫

Sj

exp(itT s)fj(s) ds dt, (36)

where Tk ⊂ RD are d-dimensional target simplices and gk are degree-p poly-
nomials. Our algorithm extends immediately to the fast application of these
Galerkin matrices. The Taylor expansion (11) separates the variables t and s
so that

f̂kj =exp(iτTσ)
∑

|α|≤m

i|α|

α!
(37)

∫

Tk

(t− τ)α exp(i(t− τ)Tσ)gk(t) dt

∫

Sj

(s− σ)α exp(iτT (s− σ))fj(s) ds+ Fm

with controllable error Fm. Summing over j yields the same source-centered
coefficient vectors as Fig. (10). After the butterfly of Section 4 produces target-
centered coefficient vectors, the final evaluation step of Fig. (10) is replaced
by a dimensional recurrence identical to (28) with sources replaced by targets.

The resulting algorithm requires a slightly strengthened version of inequality
(10). Since there are simplices rather than points in both target space and
source space, the rank-M kernel approximation (11) maintains accuracy only
if

|(t− τ)T (s− σ)| ≤ R where
(
Re

m

)m

≤ ǫ (38)

whenever S is a source tree cell with center σ, T is a target tree cell with center
τ , Tk ⊂ T , Sj ⊂ S, t ∈ Tk and s ∈ Sj. Roughly speaking, kernel approximation
fails if there are large simplices in both source and target space. This is natural
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since large simplices encounter many wavelengths of the oscillatory kernel
exp(itT s), and thus require high-frequency approximation. This restriction can
be eliminated by simplex subdivision [12].

6.3 Laplace and Gauss transforms

Counterbalancing the potential speedups available from optimized basis func-
tions is a loss of generality. For example, Taylor expansion of the exponential
is optimal over disks rather than intervals. Hence our algorithm extends imme-
diately to evaluate the fast Laplace transform [19], where i =

√
−1 is replaced

by −1.

The pointwise Gauss transform [17,18]

f̂(tk) =
N∑

j=1

exp(−‖tk − sj‖2)fj, 1 ≤ k ≤ N, (39)

where ‖t‖ is the Euclidean norm, can be viewed as a pre- and post-processed
Laplace transform since

exp(−‖tk − sj‖2) = exp(−‖tk‖2) exp(2tTk sj) exp(−‖sj‖2).

Hence our piecewise-polynomial butterfly algorithm immediately extends to
evaluate the piecewise-polynomial Gauss transform with matrix elements

f̂kj =
∫

Tk

gk(t)
∫

Sj

exp(−‖t− s‖2)fj(s) ds dt. (40)
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Bilinear quadratures for inner products

Christopher A. Wong

September 29, 2015

Abstract

A bilinear quadrature numerically evaluates a continuous bilinear map, such as
the L2 inner product, on continuous f and g belonging to known finite-dimensional
function spaces. Such maps arise in Galerkin methods for differential and integral
equations. The construction of bilinear quadratures over arbitrary domains in Rd is
presented. In one dimension, integration rules of this type include Gaussian quadrature
for polynomials and the trapezoidal rule for trigonometric polynomials as special cases.
A numerical procedure for constructing bilinear quadratures is developed and validated.

1 Introduction

Classical quadratures such as Gaussian and trapezoidal rules accurately evaluate continuous
linear functionals such as ∫

Ω

f(x)w(x) dx

for f in a finite-dimensional space of continuous functions. Bilinear quadratures evaluate
continuous bilinear forms such as the weighted L2 inner product

〈f, g〉L2 =

∫
Ω

f(x)g(x)w(x) dx

or the weighted H1 inner product

〈f, g〉H1 =

∫
Ω

d∑
i,j=1

( ∂f
∂xi

aij(x)
∂g

∂xj

)
+ f(x)g(x) dx

on finite-dimensional spaces of continuous functions f, g on Ω ⊂ Rd.
L2 inner products compute orthogonal projections onto subspaces, while H1 inner prod-

ucts provide local solutions to elliptic problems, a key ingredient of the finite element
method. For example, let Ω ⊂ Rd be a smooth bounded domain, let L be a uniformly
elliptic operator, f ∈ L2(Ω), g ∈ L2(∂Ω), and γ ∈ L∞(∂Ω). Consider the Robin problem{

Find u ∈ H1(Ω) satisfying

Lu = f in Ω, γu+ ∂u
∂n = g on ∂Ω.

(1.1)

When L = −∆, then if a bilinear form a : H1(Ω) × H1(Ω) → R is defined by a(u, v) =∫
Ω
Du ·Dv +

∫
∂Ω
γuv, the weak formulation to (1.1) seeks u ∈ H1(Ω) satisfying

a(u, v) = 〈f, v〉L2(Ω) + 〈g, v〉L2(∂Ω) for all v ∈ H1(Ω). (1.2)

The Galerkin method constructs an approximate solution to (1.2) by choosing finite-dimensional
function spaces F0,G0 and seeking u0 ∈ F0 satisfying

a(u0, v0) = 〈f, v0〉L2(Ω) + 〈g, v0〉L2(∂Ω) for all v0 ∈ G0. (1.3)

1

ar
X

iv
:1

50
9.

07
92

3v
1 

 [
m

at
h.

N
A

] 
 2

5 
Se

p 
20

15

DISTRIBUTION A: Distribution approved for public release.



Christopher A. Wong

The linear system (1.3) is solved in a basis, which requires computing a number of L2 inner
product integrals. These integrals should be computed both efficiently and accurately.

Efficiency is achieved by using the fewest function evaluations possible. When d > 1,
the optimal efficiency of a classical quadrature is unknown. For a bilinear quadrature, the
minimum number of function evaluations is equal to the dimension of function space being
integrated. The inner product of two functions f, g belonging to given finite-dimensional
function spaces is computed by the formula

〈f, g〉 = f(x)∗Wg(y), (1.4)

where f(x) ∈ Rm and g(y) ∈ Rn are evaluations of f and g at sets of points x and y in
Ω, respectively, and W is a matrix. The rank of the bilinear form is equal to the rank of
W , hence the minimal number of required function evaluations is equal to the dimension of
that function space.

Accuracy is achieved by defining and minimizing integration error. In a bilinear quadra-
ture, this is a nonlinear optimization problem for x,y, and W in (1.4), and is solved using a
Newton method for an appropriate objective function [CRY99, BGR10, XG10]. In this pa-
per an objective function is developed and demonstrated to yield numerically useful bilinear
quadrature rules in a general setting.

Numerical evaluation of inner product integrals has been studied in [BD71, McG79,
Gri80, BGR10, Che12] and as “bilinear quadrature” in [LZ87, Kno07]. This paper bor-
rows some of the framework from these past works but develops and utilizes a different
optimization procedure to produce quadrature rules.

2 Theory

2.1 Abstract formulation

In this section the problem of evaluating a general continuous bilinear form on a pair of
Banach spaces is considered. Results are given in great generality so that they apply to any
continuous bilinear forms. Later, these results are applied to useful special cases such as the
L2 and H1 inner products.

Definition 2.1. Let F and G be real Banach spaces. Then a bilinear quadrature of order
(m,n) on F ×G is a bilinear form Q defined by linear maps L1 : F → Rm and L2 : G → Rn
and a bilinear map B : Rm × Rn → R, such that, for each f ∈ F and g ∈ G,

Q(f, g) = B(L1f, L2g).

Definition 2.2. Let F ,G be real Banach spaces with a continuous bilinear form 〈·, ·〉 :
F × G → R. Finite-dimensional subspaces F0 ⊂ F and G0 ⊂ G are a dual pair if

∀f ∈ F0 \ {0}, ∃g ∈ G0 such that 〈f, g〉 6= 0,

∀g ∈ G0 \ {0}, ∃f ∈ F0 such that 〈f, g〉 6= 0.

If F0,G0 are a dual pair then dim(F0) = dim(G0).

Definition 2.3. Let F ,G be real Banach spaces with a continuous bilinear form 〈·, ·〉 :
F × G → R, and let F0 ⊂ F and G0 ⊂ G be a dual pair. A bilinear quadrature Q on F × G
is exact with respect to F0 × G0 if

〈f, g〉 = Q(f, g) for every f ∈ F0, g ∈ G0.

2 of 20
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Such a bilinear quadrature evaluates the bilinear form on F0 × G0 exactly. We have the
diagram

F0 × G0 Rm × Rn

R
〈·, ·〉

(L1, L2)

B(·, ·)

If the parent spaces F ,G are implied, we will abuse notation by referring to an exact bilinear
quadrature on F0 × G0.

Remark. If F ,G are infinite-dimensional and Q is exact on F0 × G0, then

sup
f∈F,g∈G

|Q(f, g)− 〈f, g〉| =∞,

so a bilinear quadrature can only be accurate on finite-dimensional subspaces.

Lemma 2.4. Let F0 ⊂ F and G0 ⊂ G be a dual pair, and let L1 : F → Rm, L2 : G → Rn be
linear. Then there exists bilinear B : Rm×Rn → R such that the map Q(f, g) = B(L1f, L2g)
is an exact quadrature on F0 × G0 if and only if L1|F0

and L2|G0 are both injective.

Proof. Suppose B exists. If f, f̃ ∈ F0 are distinct then there exists g ∈ G0 such that

0 6= 〈f − f̃ , g〉 = Q(f − f̃ , g) = B(L1(f − f̃), L2g),

so L1f 6= L1f̃ and L1|F0
is injective. Similarly for L2|G0 .

Suppose L1|F0
and L2|G0 are injective. Their Moore-Penrose pseudoinverses (L1|F0

)+

and (L2|G0)+ left-invert L1 and L2, respectively. Define a bilinear map on Rm × Rn by

B(x, y) =
〈
(L1|F0

)+x, (L2|G0)+y
〉
.

Then, for all f ∈ F0, g ∈ G0,

B(L1f, L2g) =
〈
(L1|F0

)+ L1|F0
f, (L2|G0)+ L2|G0 g

〉
= 〈f, g〉.

From Lemma 2.4 a necessary condition for an exact bilinear quadrature is that m ≥
dimF0, n ≥ dimG0. Minimal order is achieved when m = dimF0, n = dimG0 and B(x, y)
is uniquely given by

B(x, y) =
〈
(L1|F0

)−1x, (L2|G0)−1y
〉
.

Exact bilinear quadratures are not unique, as there are many possible linear maps L1, L2.
Furthermore, B may not be unique, since if n > dim(F0), then L1|F0

has infinitely many
left inverses. Therefore, a method is needed to choose among the infinitely many bilinear
quadratures. One metric of quality is that, in addition to its exactness on F0 × G0, the
bilinear quadrature also approximates 〈f, g〉 for some set of g’s outside of G0.

Definition 2.5. Let F0 ⊂ F and G0 ⊂ G be a dual pair, and let G1 ⊂ G be another
finite-dimensional subspace such that

G1 ⊂ F⊥0 := {g ∈ G : 〈f, g〉 = 0 for all f ∈ F0}.

Let Q be a set of bilinear quadratures exact on F0 × G0. Then Q ∈ Q is called minimal on
G1 if

Q = arg min
Q̃∈Q

σ(Q̃;F0,G1), (2.1)
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where

σ(Q̃;F0,G1) := max
06=g∈G1
06=f∈F0

|Q̃(f, g)|
‖f‖F‖g‖G

.

If Q is minimal on G1, then it approximates the pairing of F0 and G0 ⊕ G1. Precisely, if
f ∈ F0, g ∈ G0 ⊕ G1, and we write g = g0 + g1 with gi ∈ Gi, then

|Q(f, g)− 〈f, g〉| = |Q(f, g1)| ≤ σ(Q;F0,G1)‖f‖F‖g1‖G . (2.2)

Thus, minimizing σ(Q;F0,G1) will improve the approximation.
One important special case for bilinear quadratures is the symmetric case, which is when

F = G is an inner product space. In this case, a bilinear quadrature computes an orthogonal
projection.

Definition 2.6. Let F0 and G0 be a dual pair in an inner product space. Let {fi} be an
orthonormal basis for F0. Given a bilinear quadrature Q exact on F0×G0, the approximate
orthogonal projection onto F0 arising from Q is the linear map PQ given by

PQ(g) =
∑
i

Q(fi, g)fi.

An error estimate for orthogonal projections similar to (2.2) is given later in Theorem 2.7.

2.2 Integral formulation

In this section, the bilinear quadrature framework is applied to the evaluation of Sobolev
inner products on function spaces. Let Ω ⊂ Rd be a bounded domain, and let F = G =
Cr(Ω), r a non-negative integer, equipped with a Sobolev inner product

〈f, g〉Hs =
∑
|α|≤s

〈Dαf,Dαg〉L2(Ω)

for s ≤ r.
Choose a dual pair F0,G0 in F . Exactness on F0×G0 requires linear maps L1 : Cr(Ω)→

Rm, L2 : Cr(Ω)→ Rn, and bilinear form B : Rm×Rn → R so that for every f ∈ F0, g ∈ G0,
B(L1f, L2g) = 〈f, g〉Hs .

Appropriate linear maps L1, L2 are pointwise evaluations at particular points in Ω. Thus,
for the points x = (x1, . . . , xm) ∈ Ωm, y = (y1, . . . , yn) ∈ Ωn, define

L1f := f(x) =

 f(x1)
...

f(xm)

 , L2g := g(y) =

g(y1)
...

g(yn)

 .
Given bases β = {f1, . . . , fk} for F0 and {g1, . . . , gk} for G0, let M ∈ Rk×k be the Gram
matrix with entries

Mij = 〈fi, gj〉Hs .

Since F0,G0 are a dual pair, M is invertible. Define matrix functions

F (x) :=

F1(x1) . . . fk(x1)
...

...
F1(xm) . . . fk(xm)

 , G(y) :=

G1(y1) . . . gk(y1)
...

...
G1(yn) . . . gk(yn)

 .
To make L1 and L2 are injective, choose x,y, such that F (x) and G(y) have full column
rank. If B(v, w) = v∗Ww for all v, w for an m× n matrix W , then the bilinear quadrature
is exact if and only if

F (x)∗WG(y) = M. (2.3)
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Therefore a bilinear quadrature rule

Q(f, g) = f(x)∗Wg(y) (2.4)

evaluates 〈f, g〉Hs exactly for any f ∈ F0, g ∈ G0. The corresponding approximate orthogo-
nal projection onto F0 is

PQ(g) =
k∑
i=1

[fi(x)∗Wg(y)] fi.

In the basis β, the approximate projection is computed by

[PQ(g)]β = F (x)∗Wg(y) ∈ Rk. (2.5)

Good values for the matrix W and evaluation points x,y must be determined. Without
loss of generality, suppose that the bases {fi} and {gj} are Hs-orthonormal in Cr(Ω). Select
finite-dimensional G1 ⊂ Cr(Ω) for the minimization (2.1) and define the feasible set Q to
be all quadratures of the form (2.4) satisfying (2.3). If {γ1, . . . , γp} is an orthonormal basis
for G1, define

Γ(x) :=

γ1(x1) . . . γp(x1)
...

...
γ1(xn) . . . γp(xn)

 ∈ Rn×p.

Then (2.1) can be reformulated as

min
Q∈Q

σ(Q;F0,G1) = min
Q∈Q

max
g∈G1,‖g‖G=1
f∈F0,‖f‖F =1

|Q(f, g)|

= min
x,y,W

max
a,b∈Rk

‖a‖2=‖b‖2=1

|b∗F (x)∗WΓ(y)a|

= min
x,y,W

σ1 (F (x)∗WΓ(y)) subject to F (x)∗WG(y) = M, (2.6)

where σ1(A) is the leading singular value of a matrix A. Minimization (2.6) is independent
of x, since by (2.3) F (x)∗W = ML, where L is a left inverse of G(y). Therefore x is chosen
by performing a similar minimization on the left, setting an orthonormal basis {λi} for a
space F1 ⊂ G⊥0 , defining the corresponding matrix function Λ(x), and minimizing

min
x,y,W

σ1 (Λ(x)∗WG(y)) subject to F (x)∗WG(y) = M, (2.7)

where similarly the dependence of (2.7) on y may be dropped since WG(y) is equal to L∗M ,
where L is a left inverse of F (x).

In the symmetric case F0 = G0, M = I, F1 = G1, and m = n = k with x = y,
minimizations (2.6) and (2.7) are equivalent and simplify to

min
x
σ1(F (x)−1Γ(x)). (2.8)

In subsequent sections special attention is given to the symmetric case because it is used
for evaluating orthogonal projections.

2.3 Error estimates

In this section, upper bounds on several error quantities in computing an approximate
orthogonal projection of the form (2.5) are estimated.

Theorem 2.7 (Euclidean norm error estimate). Let F0,G0 be a dual pair in an inner
product space F and Q a bilinear quadrature of the form (2.4) that is exact on F0 × G0.
Let PQ be the approximate orthogonal projection onto F0 arising from Q with coordinate
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representation (2.5). If P is the exact orthogonal projection operator onto F0, G1 ⊂ F⊥0 ,
and g = g0 + g1 ∈ G0 ⊕ G1 such that gi ∈ Gi,

‖[PQ(g)− P (g)]β‖2 ≤ σ(Q;F0,G1)‖g1‖, (2.9)

where ‖ · ‖2 is the Euclidean norm.

Proof. This is essentially the same as (2.1). Since 〈fi, g〉 = Q(fi, g0), then

‖[PQ(g)− P (g)]β‖2 =

(
k∑
i=1

|Q(fi, g)− 〈fi, g〉|2
)1/2

=

(
k∑
i=1

|Q(fi, g)−Q(fi, g0)|2
)1/2

=

(
k∑
i=1

|Q(fi, g1)|2
)1/2

= max
α6=0

1

‖α‖2

k∑
i=1

αiQ(fi, g1),

where α = (αi) ∈ Rk. Each f ∈ F0 can be written as f =
∑
i αifi, so

max
α6=0

1

‖α‖2

k∑
i=1

αiQ(fi, g1) = max
06=f∈F0

Q(f, g1)

‖f‖

≤ σ(Q;F0,G1)‖g1‖.

Theorem 2.7 provides an error bound for an approximate orthogonal projection when
the projected function g is in G0 ⊕ G1. If F0 is a space of polynomials, then it is also useful
to obtain an error estimate that depends on the regularity of g.

Theorem 2.8 (Uniform norm error estimates for polynomials). Let F = C(Ω) with Ω ⊂
Rd a bounded, convex domain, equipped with the L2 inner product. Let F0 be the set of
multivariate polynomials of degree at most n with an orthonormal basis β = {fi}, let P :
F → F be the orthogonal projection onto F0, and suppose PQ is an approximate orthogonal
projection onto F0 with coordinate representation (2.5). There exist a constant C > 0 such
that for every g ∈ Cn+1(Ω), then

‖[Pg − PQg]β‖∞ ≤ C‖Dn+1g‖L∞ , (2.10)

where
‖Dn+1g‖L∞ :=

∑
|α|=n+1

max
x∈Ω
|Dαg(x)|.

Proof. Using (2.5) and the exactness of PQ on F0, then writing g = Pg+(I−P )g = g0 +g1,
we have

‖[Pg − PQg]β‖∞ = ‖F ∗Wg1(x)‖∞
≤ ‖F ∗W‖∞→∞‖(I − P )g‖C0

≤ ‖F ∗W‖∞→∞‖(I − P )(g − q)‖C0 ,

where q is any element of F0 and ‖ · ‖∞→∞ is the induced matrix ∞ norm. Then

‖[Pg − PQg]β‖∞ ≤ ‖F ∗W‖∞→∞(1 + ‖P‖C0→C0)‖g − q‖C0 ,
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where the C0 operator norm of P is given by

‖P‖C0→C0 = max
x∈Ω

∫
Ω

∣∣∣∑
i

fi(t)fi(x)
∣∣∣ dt.

By the Deny-Lions/Bramble-Hilbert lemma [EG04], for all g ∈ Cn+1(Ω) there exists a
constant CBH > 0 (dependent on n and Ω) such that

inf
q∈F0

‖g − q‖C0 ≤ CBH‖Dn+1g‖L∞ ,

which combined with the previous inequality yields the desired result with

C = ‖F ∗W‖∞→∞(1 + ‖P‖C0→C0)CBH .

In the presence of round-off error in function evaluation, the conditioning of an approx-
imate orthogonal projection is also important to quantify.

Theorem 2.9. Let PQ be an approximate orthogonal projection of the form (2.5). If δg(y)
is the absolute error in computing g(y) and δPQ(g) is the resulting projection absolute error,
then with respect to a vector norm ‖ · ‖,

‖[δPQ(g)]β‖
‖[PQ(g)]β‖

≤ κ‖δg(y)‖
‖g(y)‖

,

where κ = κ(F ∗(x)W ) is the matrix condition number with respect to ‖ · ‖.

2.4 Classical and bilinear quadratures on univariate polynomials

In this section we review Gaussian quadratures and show they are a special case of a bilinear
quadrature in one dimension. We then propose a way to generalize to quadratures evaluating
inner products of polynomials on multidimensional domains.

Definition 2.10. Let Ω ⊂ Rd be a connected domain. A classical quadrature q of order n
on Ω is a linear functional defined by a set x = (x1, . . . , xn), xi ∈ Ω, called the nodes, and
a vector w ∈ Rn, whose components are called the weights, such that for any f ∈ C(Ω),

q(f) = w∗f(x) =

n∑
i=1

wif(xi).

Furthermore, if F0 is a subspace of C(Ω) and µ is a Borel measure, then q is said to be
exact on F0 if

q(f) =

∫
Ω

f dµ

for all f ∈ F0.

Let Pn be the space of univariate polynomials of degree up to n, I an open interval, and
µ a finite absolutely continuous Borel measure on I.

Definition 2.11. Suppose P2n−1 is µ-integrable on I. Then a Gaussian quadrature of order
n on I is a classical quadrature of order n on I that is exact on P2n−1 with respect to µ.

The advantages and disadvantages of the theory of quadratures for polynomials are
rooted in existence and uniqueness result for Gaussian quadratures.

Theorem 2.12. Suppose P2n−1 is µ-integrable on I, and let {φk} denote any set of L2(I, µ)-
orthonormal polynomials such that deg(φk) = k. Then the following sets are equal:
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1. The zeros of φn.

2. The eigenvalues of the symmetric bilinear form on Pn−1 given by

B(f, g) :=

∫
I

xf(x)g(x) dµ = 〈xf(x), g(x)〉L2(I,µ) .

3. The nodes {xi} of a Gaussian quadrature of order n on I.

Proof. (1⇐⇒ 2) Since B(·, ·) is symmetric it is diagonalizable with n real eigenvalues {λi}.
If a polynomial ψi(x) is an eigenvector for λi, then for 0 ≤ j ≤ n− 1,

〈xψi(x), φj(x)〉 = λi〈ψi(x), φj(x)〉 =⇒ 〈(x− λi)ψi(x), φj(x)〉 = 0.

Since (x− λi)ψi(x) ∈ Pn for each i, and the only polynomials in Pn that are orthogonal to
each of φ0, . . . , φn−1 are multiples of φn, then each (x−λi) is a factor of φn(x). Thus φn(x)
is a multiple of (x− λ1) . . . (x− λn) and its zeros are the eigenvalues of B(·, ·).

(2 ⇐⇒ 3) Suppose a Gaussian quadrature with weights {wi} and nodes {xi} exists.
With respect to the basis of orthonormal polynomials {φk}, the bilinear form B(·, ·) has a
symmetric matrix represention B with entries given by

Bij =

∫
I

xφi(x)φj(x) dµ =

n∑
k=1

wkxkφi(xk)φj(xk).

If

uk =


√
wkφ0(xk)

...√
wkφn−1(xk)

 , X =

x1

. . .

xn

 ,
then

B =
n∑
k=1

xkuku
∗
k = UXU∗. (2.11)

Since δij =
∑n
k=1 wkφi(xk)φj(xk), then I = UU∗ and U is a unitary matrix. Then (2.11)

is the unitary diagonalization of the symmetric matrix B with eigenvalues given by the
xk’s.

Remarks. Theorem 2.12 shows that if a Gaussian quadrature of order n exists, its nodes are
the zeros of φn. The existence proof is completed by showing the weights exist and satisfy

1/wi =
n∑
j=0

(φj(xi))
2.

Therefore, taking the square root
√
wk is legitimate [DR84]. Theorem 2.12 also provides an

efficient method to construct these quadratures. The matrix B in (2.11) is tridiagonal, so
its eigenvalues can be calculated quickly, even for very large n [GW69].

Gaussian quadrature is optimal for integrating polynomials on an interval, but does not
extend readily to higher-dimensional domains. The zeros of a multivariate polynomial are
generally not isolated (consider f(x, y) = xy) so they cannot all be used as nodes of a
classical quadrature. Additionally, the connection between nodes and eigenvalues no longer
holds since the eigenvalues are only scalars (the connection extends to two-dimensional
domains with complex eigenvalues [VR14]).

Bilinear quadratures make sense in any dimension, yet contain Gaussian quadrature as
a special case. Consider a classical quadrature with nodes x = {xi} and weights w = {wi}.
If a function h(x) = f(x)g(x) with f, g belonging to function spaces F ,G respectively, then

8 of 20

DISTRIBUTION A: Distribution approved for public release.



Christopher A. Wong

the classical quadrature q evaluated on h is the same as a bilinear quadrature Q on f, g
given by

Q(f, g) = f(x)∗

w1

. . .

wn

 g(x) = w∗h(x) = q(h).

The matrix W is diagonal with entries given by the weights of the classical quadrature.
Thus for a general bilinear quadrature of the form (2.4) the entries of W can be viewed as
analogues of the weights.

Theorem 2.13. The nodes of a Gaussian quadrature of order n are the same as the points
x in the unique bilinear quadrature of order (n, n) on Pn−1 × Pn−1 that is minimal on
span{φn}, where φn is the orthonormal polynomial of degree n. Furthermore, the matrix
W in (2.4) is a diagonal matrix whose diagonal entries are the weights of the Gaussian
quadrature.

Proof. Let φ0, . . . , φn−1 be the orthonormal polynomials up to degree n − 1 such that
deg φk = k, x = (x1, . . . , xn) ∈ Ωn, and define

Φ(x) =

φ0(x1) . . . φn−1(x1)
...

...
φ0(xn) . . . φn−1(xn)

 .
Then the minimization problem (2.8) becomes

min
x∈Ωn

σ1

Φ(x)−1

φn(x1)
...

φn(xn)


 .

This is uniquely minimized (up to reordering of the xi’s) when x is the set of zeros of φn
in which case σ1 = 0. The corresponding bilinear quadrature Q exactly evaluates products
where one polynomial has degree n − 1 and the other has degree n. Then Q has the same
evaluation points as a bilinear quadrature formed from the Gaussian quadrature. Since W
is unique, then it must be equal to the diagonal matrix with entries given by the weights of
the Gaussian quadrature.

The above result suggests that a good way to accurately compute inner products of poly-
nomials on a multidimensional domain is to utilize a symmetric bilinear quadrature that is
exact on Pn×Pn and minimal on Pn+1 ∩P⊥n . Just as Gaussian quadratures accurately inte-
grate nearly polynomial functions accurately, bilinear quadratures constructed in the above
manner are expected to evaluate inner products of nearly polynomial functions accurately.
Numerical results for these quadrature are shown in section 3.

2.5 Classical and bilinear quadratures on trigonometric polynomi-
als

For the space of trigonometric polynomials

Tn−1 = span{1, sinx, . . . , sin (n− 1)x, cosx, . . . , cos (n− 1)x},

it is known that the (n+ 1)-point trapezoidal rule

Tra(p) :=
π

n
p(0) +

π

n
p(2π) +

2π

n

n−1∑
j=1

p

(
2πj

n

)
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is exact for integrating all p ∈ Tn−1 over the interval [0, 2π]. Since Tn−1 is a rotationally-
invariant function space on the circle R/2πZ, the trapezoidal rule yields a family of n-point
classical quadratures for Tn−1 given by∫ 2π

0

p(x) dx =
2π

n

n−1∑
j=0

p(xj) for all p ∈ Tn−1, xj+1 − xj =
2π

n
. (2.12)

When n is odd, the above trapezoidal rule quadrature is a special case of a bilinear quadra-
ture:

Theorem 2.14. Let n > 0 be an odd integer. Then the set of classical quadratures on Tn−1

in (2.12) are equivalent to symmetric bilinear quadratures of order (n, n) on T(n−1)/2 ×
T(n−1)/2 that are minimal on span{sinnx, cosnx}.

Proof. Set n = 2k + 1. Since Tn−1 is rotationally invariant on the circle, then if Q is
a symmetric bilinear quadrature on Tk × Tk of the form (2.4), σ(Q) is invariant under
rotations of the evaluation points x = (x1, . . . , xn). Therefore without loss of generality
x1 = 0, xj ∈ [0, 2π). Define

F (x) =
1√
2π


1 . . . 1

e−ikx2 . . . eikx2

...
...

e−ikxn . . . eikxn

 ,Γ(x) =
1√
2π


1 1

e−i(k+1)x2 ei(k+1)x2

...
...

e−i(k+1)xn ei(k+1)xn

 ,
and it suffices to prove that choosing xj = 2πj/n solves the minimization problem (2.1).

If xj = 2πj/n, then the first column of F (x) is the second column of Γ(x), and the last
column of F (x) is the first column of Γ(x). Therefore, in this case, F (x)−1Γ(x) =

[
en e1

]
,

where ej is the j-th standard coordinate vector, hence σ1(F (x)−1Γ(x)) = 1.
We claim that for any choice of nodes x ∈ [0, 2π)n with x1 = 0,

σ1(F (x)−1Γ(x)) ≥ 1. (2.13)

If (2.13) is established, then setting xj = 2π(j − 1)/n yields a minimal quadrature in Q.
To show this, let u be the first column of F (x)−1Γ(x). We will show that ‖u‖2 ≥ 1, from
which (2.13) follows. The column u satisfies the equation

F (x)u =
1√
2π


1

e−i(k+1)x2

...
e−i(k+1)xn

 ,
which is equivalent to the Vandermonde system

1 1 . . . 1
1 eix2 . . . ei(n−1)x2

...
...

...
1 eixn . . . ei(n−1)xn

u =


1

e−ix2

...
e−ixn

 .
Setting zj = eixj , then the entries of u are the coefficients of a degree n − 1 complex
polynomial p(z) such that p(zj) = 1/zj . Setting q(z) = zp(z), it suffices to find a degree n
polynomial q(z) such that q(0) = 0 and q(zj) = 1. Such a q is unique and

q(z) = 1−
n∏
j=1

(1− z/zj) .

Then the leading coefficient of q, which is also the leading coefficient of p, has absolute value
1, and hence ‖u‖2 ≥ 1.
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Remark. The trapezoidal rule uniquely generates a minimal bilinear quadrature, since in
that case q(z) = αzn for some |α| = 1. If xj ’s are not equispaced, q(z) has some nonzero
lower-order coefficients.

2.6 Lobatto quadrature and the non-invertible case

While minimizing the number of evaluation points will reduce the cost of evaluating a
quadrature, it may be advantageous to use more points than is optimal in order to improve
accuracy. One example is Lobatto quadratures for polynomials of one variable, which use
more points than Gaussian quadratures. In this section, we observe Lobatto quadratures
are a special case of a bilinear quadrature where extra evaluation points are used, in which
case the matrix function F (x) is non-invertible. The formulation of Lobatto-like bilinear
quadratures on general domains is given.

Definition 2.15. Let P2n−1 be µ-integrable on an interval I = [a, b]. Then the correspond-
ing Lobatto quadrature is a classical quadrature of order n+ 1 exact on P2n−1 with respect
to µ such that if x0, . . . , xn are the nodes, then x0 = a and xn = b.

Theorem 2.16. Suppose P2n−1 is µ-integrable on I, and let {φk} denote the unique set
of orthonormal polynomials such that deg(φk) = k. Then there exists a unique Lobatto
quadrature of order n + 1, and the interior nodes {xi : 1 ≤ i ≤ n − 1} are the zeros of
d
dxφn(x).

A Lobatto quadrature of order n + 1 corresponds to a symmetric bilinear quadrature
that is exact on Pn−1 × Pn−1 and minimal on Pn in which the W matrix is diagonal and
the matrix F (x) is given by

F (x) =


φ1(a) . . . φk(a)
φ1(x1) φk(x1)

...
...

φ1(xn−1) φk(xn−1)
φ1(b) . . . φk(b)

 .

Unlike in the Gaussian quadrature case, the matrix F = F (x) is not square, so there
exists infinitely many matrices W satisfying (2.3). Therefore, the simplified minimization
condition (2.8) cannot be employed, and one must optimize over both the quadrature nodes
x and matrices W . In general, suppose F is m × k and G is n × k, both with full column
rank. Then all matrices W satisfying (2.3) are of the form

W = (F ∗)+MG+ + Y − FF+Y GG+, (2.14)

where Y is an arbitrary m×n matrix. In the symmetric case F = G and M = I, a minimal
bilinear quadrature is found through the unconstrained minimization

Find Y ∈ Rm×m and x minimizing σ1

(
F+Γ + F ∗Y (I − FF+)Γ

)
(2.15)

While computationally more expensive, this optimization procedure can be used to compute
symmetric Lobatto-like bilinear quadratures. First fix points x0 that the bilinear quadrature
is required to use, then construct the (typically non-square) matrix function F (x0,x), where
only the points x are varying. Then minimize according to (2.15). This procedure is
applicable for arbitrary domains Ω, any space of continuous functions, and any inner product
on that space.

2.7 Change of variables

For a bilinear quadrature computing an L2(Ω) inner products, a bilinear quadrature can be
cheaply constructed for L2(Φ(Ω)) inner products, where Φ is an affine invertible change of
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variables. For continuous functions fi on Ω, set

f̃i(Φ(x)) = fi(x)|det(DΦ)|−1/2.

Then

〈f̃i, f̃j〉L2(Φ(Ω)) =

∫
Φ(Ω)

f̃i(y)f̃j(y) dy =

∫
Ω

fi(x)fj(x) dx = 〈fi, fj〉L2(Ω).

The Jacobian DΦ is constant when Φ is affine, so if the bilinear quadrature on L2(Ω) exact
on F0 × G0 is

Q(f, g) = f(x)∗Wg(y),

a bilinear quadrature on L2(Φ(Ω)) for (F0 ◦ Φ−1)× (G0 ◦ Φ−1) is given by

Q̃(f̃ , g̃) = f̃(Φ(x))∗W̃ g̃(Φ(y)), W̃ = W |det(DΦ)|−1. (2.16)

For an Hs inner product with s > 0, in general a new bilinear quadrature cannot be
cheaply constructed under a change of variables. However, when Φ(x) = λUx + b is affine
with λ ∈ R and U a unitary matrix, a change of variables can still be performed at low
cost. Let W be the matrix in a bilinear quadrature of form (2.4) computing H1(Ω) inner
products. Then write W = W0 +W1, where W0 is the matrix for a bilinear quadrature that
computes L2(Ω) inner products. Then a new bilinear quadrature for H1(Φ(Ω)) is formed
with matrix

W̃ = |λ|−1W0 + |λ|−3W1

and evaluation points mapped by Φ.

3 Computation

In this section, a basic numerical procedure to produce symmetric bilinear quadrature rules
is described. Afterward, some numerical examples of bilinear quadrature rules are presented.

3.1 Orthogonalization

For a function space F0, one may initially have a numerical routine to evaluate (up to
machine precision) basis functions ψ1, . . . , ψk for F0 that are not orthonormal. Assuming
that the inner products 〈ψi, ψj〉 = Mij can be computed exactly, F (x) is computed from
Ψ(x) and Gram matrix M by

1. Compute the lower triangular matrix L in the Cholesky factorization M = LL∗.

2. For a given x, perform a lower-triangular solve on the matrix equation Ψ(x)∗ = LZ.

3. Set F (x) = Z∗.

The same procedure can be used to produce an orthonormal basis for the function space F1

that the bilinear quadrature is minimized against.

3.2 Nonlinear optimization

For the invertible symmetric case we have reduced our problem to the minimization problem
(2.6):

Find x minimizing σ1

(
F (x)−1Γ(x)

)
.

This is a nonlinear optimization problem in d · k variables, where d is the dimension of the
integration region Ω and k = dim(F0).

The problem of minimizing the largest singular value of a matrix function A(x) is equiv-
alent to minimizing the largest eigenvalue of the symmetric positive semidefinite matrix
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A∗(x)A(x). This type of the eigenvalue optimization problem has been extensively studied
in its own right; see [OW95] [SF95].

Often F (x) and Γ(x), but not their derivatives, can be accurately computed. Also, the
multiplicity of the largest singular values are generally unknown. Consequently, a quasi-
Newton method is ideal for the optimization procedure. The objective function is non-
convex and typically has multiple local minima, so the optimization procedure is run with
many initial guesses. Furthermore, in the presence of many nearby local minima, after
each convergent result, the computed points can be perturbed by a small value δ and the
procedure run again with perturbed points as another initial guess. This is repeated until
suitable convergence. While this procedure may be expensive, computing a quadrature
is typically a one-time cost, after which the quadrature can be used repeatedly for its
applications.

In our numerical experiments, we employ a quasi-Newton method with BFGS updates
as implemented as part of Matlab’s fminunc routine [Bro70, Fle70, Gol70, Sha70]. Since
F (x)−1Γ(x) is a small, dense matrix, its norm is computed by calculating its full SVD.
Up to 105 initial random points uniformly distributed across the domain are used, and the
procedure is iterated until convergence in double-precision arithmetic.

For our numerical implementation we do not reinforce the constraint that the evaluation
points xi remain in the integration domain Ω. While in general the full constrained mini-
mization problem may be necessary, we have empirically observed that it is not necessary
for quadratures on polynomials. This can be explained by observing that the orthogonal
polynomials grow rapidly outside of Ω; thus points outside the domain are not expected to
be good candidates for the solution to the minimization problem.

Remarks. In the case of polynomials it is possible to accurately compute the gradients of
F (x) and Γ(x), in which case a quasi-Newton method may be unnecessary. The BFGS
method has been chosen since it is robust for different function spaces.

3.3 Bilinear quadratures on triangular domains

In practical applications one of the most important cases to consider is the L2 product
of polynomials on a simplex. For example, in the finite element method one typically
solves a two-dimensional PDE locally on polynomials supported on triangular domains. The
discretization requires computing a number of inner products. In this section we compute
bilinear quadratures that are exact on polynomials on a triangular domain.

Because the space of polynomials is affine-invariant it suffices to find evaluation points
for polynomials on a reference triangle. Given a bilinear quadrature on a reference triangle a
bilinear quadrature for polynomials on any other triangle can be cheaply obtained using the
change of variables formula (2.16). A basis of orthogonal polynomials on the right triangle
with vertices (−1,−1), (−1, 1), (1,−1) is given by

Km,n(x, y) =

(
1− v

2

)m
Pm

(
2x+ y + 1

1− y

)
P 2m+1,0
n (y), (3.1)

where Pm is the mth Legendre polynomial and Pα,βn is the nth Jacobi polynomial with
parameters α, β. These functions can be computed efficiently and stably as in [XG10].

Using this basis, symmetric bilinear quadratures exact for the L2 inner product over this
right triangle on F0 = Pn and minimal on F1 = Pn+1 ∩ P⊥n were computed. The minimal
number of evaluation points were used, in which case the number of points required is

k = dim(Pn) =

(
n+ 2

2

)
.

In Table 1, for each computed bilinear quadrature rule, the minimized largest singular value
σ = σ1(F (x)−1Γ(x)) is given, along with the ∞-norm condition number of the matrix for
the approximate orthogonal projection.
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n k σ κ∞(F ∗W )
0 1 0.00000 1.00000e+0
1 3 0.14507 2.82218e+0
2 6 0.30373 6.29185e+0
3 10 0.47762 1.15455e+1
4 15 0.65817 2.03810e+1
5 21 0.78394 3.39955e+1
6 28 0.87930 4.71065e+1
7 36 0.95305 8.48889e+1
8 45 1.05595 1.09107e+2

Table 1: Numerical results for k-point bilinear quadratures on Pn ×Pn for L2 on the interior of the
reference right triangle.

Figure 1: Evaluation points for bilinear quadratures on Pn × Pn for L2 on the interior of an
equilateral triangle, for n = 4, 8.

In Figure 1, the evaluation points of two bilinear quadrature rules on the equilateral
triangle are shown. Notice that the points possess some symmetries. The expectation
that quadrature points for polynomials should have some symmetries has been exploited
in the past to reduce the complexity of searching for classical quadratures [XG10]. In the
quasi-Newton method used to solve (2.8), however, no symmetry conditions were explicitly
enforced.

3.4 Numerical accuracy of quadratures on triangles

In the section the computed bilinear quadratures on triangles are compared against existing
high-order classical quadrature schemes on triangles in the setting of orthogonal projections.
Given the space F0 = Pn on Ω with L2-orthonormal basis β = {fi}, orthogonal projection
operator P onto F0, and given g ∈ C∞(Ω), we wish to compute

[Pg]β =

〈f1, g〉L2

...
〈fk, g〉L2

 .
The column vector [Pg]β can be computed using either an approximate orthogonal projec-
tion, or a classical quadrature for each entry

∫
Ω
fig.

Since the approximate orthogonal projection matrix F ∗W , weights of the classical quadra-
ture, and locations of evaluation points are all precomputed, the flop cost for each method
is solely determined by the number of evaluation points needed. The 28-point bilinear
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P′5 P′6 C TP
Dunavant 9.38e-14 3.97e-01 4.97e-05 9.06e-03
Xiao/Gimbutas 3.29e-15 2.73e-01 1.91e-05 4.74e-03
Bilinear 3.92e-15 3.99e-15 6.74e-06 1.71e-03

Table 2: Average `2-norm relative error in computing approximate orthogonal projection coefficients
onto P6 for four different sets of functions using three methods that use 28 function evaluations.

quadrature as shown in Figure 1 was utilized. For comparison we chose two different 28-
point classical quadratures, each exact on polynomials of degree up to 11, due to Dunavant
[Dun85] and Xiao and Gimbutas [XG10], respectively. These quadratures were computed
using the libraries available from [Bur15]. Both classical quadratures were similarly trans-
formed to an equilateral triangle of side length 1.

For our numerical experiments, we draw the projected function g from four different
probability distributions of functions, which we denote by P′5,P′6, C, and TP .

We define
P′n := {g ∈ Pn : ‖g‖L2 = 1},

with probability measure given by drawing a random vector of coefficients uniformly in
[−1, 1]k, and then normalizing the coefficients to have `2-norm 1, and using those as the
Fourier coefficients on the orthonormal polynomials on the triangle.

The set C contains smooth functions with slow decay, and is defined by functions of the
form

g(x, y) =
1

1 + (a1x+ a2y)2
,

where a = (a1, a2) is drawn uniformly from the unit circle.
The set TP contains smooth non-polynomial functions with oscillations, and has ele-

ments of the form
g(x, y) = ea1x+a2y cos(4b1x+ 4b2y)p(x, y),

where parameters (a1, a2) and (b1, b2) are both drawn uniformly from the unit circle, and
p(x, y) is a random element of P′2 with L2 norm 1 as chosen in the same manner as for the
first two cases.

For each randomly chosen function g, we computed the column vector [PQg]β using the
three quadrature methods. The exact value [Pg]β was computed with a 295-point classical
quadrature that exactly integrates polynomials up to degree 40, as computed in [XG10].
The `2 norm relative error was averaged over 104 randomly generated g for each of the four
classes of functions. The resulting average relative errors are shown in Table 2.

On P′5, all three quadrature rules achieve very high accuracy, with the Dunavant quadra-
ture losing one digit of accuracy and both Xiao/Gimbutas and bilinear quadratures correctly
computing the orthogonal projection up to double precision. This is expected since all
quadratures are designed to integrate such polynomial functions exactly.

On P′6, neither classical quadratures are accurate to full precision because both classical
quadratures are only capable of exactly integrating polynomials of degree up to 11. Since
the bilinear quadrature can exactly integrate P6 × P6, it has mean error on the order of
machine precision.

On the sets C and TP , none of the quadratures are accurate to machine precision since
none of the functions are polynomials. However, the bilinear quadrature achieves better
accuracy than the classical quadratures despite having the same number of evaluation points.

The existing classical quadratures are already very good, integrating non-polynomial
functions from C and TP with several digits of accuracy. Additionally, the classical quadra-
ture of Xiao/Gimbutas performs better than the Dunavant quadrature in all four cases.
However, the bilinear quadrature was as good or better than the classical quadratures in
each case, despite using the same number of evaluations. This result is explained by the fact
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n k σ κ∞(F ∗W )
0 1 0.00000 1.00000e+0
1 3 0.67739 2.91852e+0
2 6 0.79523 7.50137e+0
3 10 0.92888 1.17526e+1
4 15 0.97590 2.68367e+1
5 21 0.99701 3.14417e+1
6 28 1.00066 6.42937e+1
7 36 1.00711 7.34237e+1
8 45 1.00784 1.03464e+2

Table 3: Numerical results for k-point bilinear quadratures on Pn × Pn for L2 on the interior of a
square.

Figure 2: Evaluation points for bilinear quadratures on Pn × Pn for L2 on the interior of a square,
for n = 4, 8.

that bilinear quadratures are specifically designed for the orthogonal projection problem,
while classical quadratures are designed for evaluating a linear functional.

3.5 Bilinear quadratures on other domains

In this section bilinear quadratures for L2 inner products of polynomials on the interiors
of a square and a circle are computed. We observe that, just as in the case of triangles,
minimizing according to (2.8) produces well-behaved evaluation points.

For the case of the square domain [−1, 1]2, orthogonal polynomials are Pn(x)Pm(y),
where Pn is the nth Legendre polynomial. Table 3 shows the minimized leading singu-
lar value σ and matrix condition number κ∞ for several k-point bilinear quadratures on
the square. Interestingly, the evaluation points on the square do not appear to obey any
symmetries.

Remark. One can produce a classical quadrature scheme on the square by simply taking the
tensor product of two Gaussian quadratures on an interval. However, this exactly integrates
basis functions of the form xαyβ with 0 ≤ α ≤ n, 0 ≤ β ≤ n, rather than integrating
polynomials whose total degree does not exceed some value.

On the unit disk, an orthogonal basis of polynomials is given in polar coordinates by the
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n k σ κ∞(F ∗W )
0 1 0.00000 1.00000e+0
1 3 0.67617 3.04857e+0
2 6 0.79868 5.50559e+0
3 10 0.89712 1.01509e+1
4 15 0.94133 1.59179e+1
5 21 0.97804 2.24193e+1
6 28 1.00337 3.94055e+1
7 36 1.02908 5.60579e+1
8 45 1.07413 6.75064e+1

Table 4: Numerical results for k-point bilinear quadratures on Pn × Pn for L2 on the unit disk.

Figure 3: Evaluation points for bilinear quadratures on Pn×Pn for L2 on the unit disk, for n = 4, 6.

Zernike polynomials Zm,n(r, θ), defined by

Zm,n(r, θ) := Qm,n(r) cos(mθ), Z−m,n(r, θ) := Qm,n(r) sin(mθ),

Qm,n(r) :=

(n−m)/2∑
k=0

(−1)k
(
n− k
k

)(
n− 2k
n−m

2 − k

)
rn−2k,

where n ≥ m ≥ 0 are integers and n − m is even. Table 4 shows the minimized leading
singular value σ and matrix condition number κ∞ for several k-point bilinear quadratures
on the unit disk.

3.6 Bilinear quadrature for the Sobolev inner product

In this section we compute bilinear quadratures that evaluate the Sobolev inner product

〈f, g〉H1 =

∫
Ω

Df(x) ·A(x)Dg(x) + f(x)g(x) dx,

where A(x) is symmetric positive definite on Ω. One advantage of a bilinear quadrature for
H1 is that the above integral can be numerically evaluated using only point evaluations of
f, g and does not require evaluating any derivatives.

For Ω = [−1, 1], bilinear quadratures for H1 on Pn×Pn and minimal on Pn+1∩P⊥n were
computed for two positive weight functions A(x) = 1+x2 and A(x) = ex. Orthogonalization
was performed by starting with the Legendre polynomials and computing the Gram matrix
M using a 40-point classical Gaussian quadrature.
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n k σ κ∞(F ∗W )
1 2 0.00000 5.00000e+0
2 3 0.00000 1.38132e+1
3 4 0.00000 2.72011e+1
4 5 0.00000 6.59254e+1
5 6 0.00000 1.21461e+2
6 7 0.00000 1.86818e+2
7 8 0.00000 2.86549e+2
8 9 0.00000 4.22824e+2

Table 5: Numerical results for bilinear quadratures on Pn×Pn for H1[−1, 1] with the weight function
A(x) = 1 + x2.

n k σ κ∞(F ∗W )
1 2 0.00000 4.52560e+0
2 3 0.00000 1.30446e+1
3 4 0.00000 2.49183e+1
4 5 0.00000 5.13338e+1
5 6 0.00000 9.28987e+1
6 7 0.00000 1.50063e+2
7 8 0.00000 2.28284e+2
8 9 0.00000 3.30651e+2

Table 6: Numerical results for bilinear quadratures on Pn×Pn for H1[−1, 1] with the weight function
A(x) = ex.

In Tables 5 and 6 the singular value σ and condition number κ∞ are shown for the
two bilinear quadratures for H1. In all cases, σ is zero up to machine precision, since the
exact solution to the minimization (2.6) is the roots of the (n+ 1)th-degree H1-orthogonal
polynomial, just as for Gaussian quadratures. We observe that the condition number of the
approximation projection matrix F ∗W is larger than in the L2 case. This can be explained
by the fact that small perturbations in the function values can lead to large perturbations
in the derivatives.

4 Conclusions

A quadrature framework for numerically evaluating a continuous bilinear form on function
spaces has been presented, and an optimization procedure for computing such quadratures
has been outlined. We have argued that this is the correct approach to numerically evalu-
ating orthogonal projections of functions onto a fixed subspace.

We have also observed that the optimization approach for finding bilinear quadratures
does not depend on the ambient dimension, the domain of integration, or the function space
to be integrated exactly. Despite this generality, in our numerical experiments we found the
resulting quadratures perform well, achieving both efficiency and accuracy.

There are several topics to explore in future work. One is the construction and utiliza-
tion of bilinear quadratures tailored to specific high-order Galerkin methods. Another is the
investigation of the performance of bilinear quadratures for evaluating other (non-Sobolev)
bilinear forms. Yet another finding an efficient numerical method for solving the optimiza-
tion problem (2.15) for the non-invertible case. In that case, a bilinear quadrature is not
uniquely determined by its evaluation points, and the optimization problem gains many
additional degrees of freedom. Lastly, one could investigate the use of bilinear quadratures
for solving integral equations. Such quadratures may prove useful in the Nyström discretiza-
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tion of Fredholm integral operators [Bol72] or boundary integral equations on domains with
corners [BRS10].
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